Max Learning's Algebra Antics

Table of Contents
WELCOME! 3
Note to Parents 4
Pronunciation Guide 4
BrainAids 5
CONCEPTS 6
Math Basics 6
Mental Manipulatives 6
Numbers 6
Operators \& Operands 7
Algorithms 7
PEMDAS 8
Factors 9
Factoring Tricks 9
Factor Trees 10
GCF: Grip, Catch, Focus 10
Multiples 11
LCM: Load, Crush, Mix 11
Algebra Basics 12
Term \rightarrow Expression \rightarrow Equation 12
Term: $\mathrm{CV}^{\mathrm{E}} \mathrm{MD}$ 13
Term Families 13
Expression: Mono or Poly 14
Coefficient Coworkers 14
Equation: Balancing Act 15
Golden Rule of Equations 15
Algebra: Science of Equations 16
Variable = Box 16
Goal of Algebra: What's in the Box? 17
Isolating the Variable: Garbo Rule 18
Isolating the Variable: Clearly Opposite 18
Evaluating an Expression: Plug \& Chug 18
Proportionality 19
Relation: Pairing Up 20
Ordered Pair: (Boy, Girl) 20
Types of Relations: Dating 20
Cartesian Coordinates: (x, y) 21
Plotting Ordered Pairs: x across, y high 22
Plotting Relations: All over the map 22
Function: Fun at the Junction 23
Discrete vs. Continuous: No line vs. line 23
Vertical Line Test: One y per x 23
Standard Function Layout: $y=x$ 24
Function Families 24
OPERATIONS 25
One Equation, One Unknown 25
1EqUnk Added Term $(x+2=4)$ 25
1EqUnk Subtracted Term $(x-2=4)$ 26
1EqUnk Multiplied Variable $(2 x=4)$ 27
1EqUnk Divided Variable (x/2 = 4) 28
Multiple Operations: Clear As Mud 29
Simplifying Terms 30
Multiple Terms: Family Reunion 30
Separated Terms: Take Sides 31
Distributed Terms: Fair to All 31
Simplifying Coefficients: Throw Mud 32
Clear Denominators: Magnify by LCM 32
Reduce Coefficients: Dissolve with GCF 32
Fractional Terms 33
Clearing Equated Fractions: Shoot-the-Chute 33
Combining Fractions: Spotlighting 34
Two Equations, Two Unknowns 35
2EqUnk Elimination: You're outa here! 36
Add to Eliminate 36
Subtract to Eliminate 37
Multiply Then Eliminate 39
2EqUnk Substitution: Identical Twins 40
2EqUnk Identical or Parallel: All or Nothing 41
Linear Equations 42
Slope-Intercept Form: $y=m x+b$ 42
Slope: $\mathrm{m}=$ mountain 43
Calculating Slope: $\Delta \mathrm{y} / \Delta \mathrm{x}$ 44
Y-intercept: b = ball 45
Plotting LinEqs 46
Quadratic Equations 47
Standard Form: $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ 47
Analyzing Coefficients: Easy as a-b-c 48
Multiplying \& Factoring Expressions 49
Traditional Techniques 49
Cat Techniques 50
Cat Traps \& Tips 51
Solving QuadEqs 52
Zero-Product Principle 52
Solving QuadEqs by Cat Factoring 53
Solving QuadEqs with Quadratic Formula 54
Imaginary/Complex Number Solutions 55
WORD PROBLEMS 56
Word Problem IDEAS 56
English-to-Math Chart 57
Word Problem Types 58
Word Problem Analysis 59
Unit Analysis 60
Proportional Ratios 60
Freeform Word Problems 61
Geometric Word Problems 62
Travel Word Problems 64
Financial Word Problems 68
Work Word Problems 73
Mixture Word Problems 74
Conversion Word Problems 75
Conversion by Replacement/Ratio 76
Conversion Ladders 77
ANSWER KEY 78

Welcome!

Hi, my name is Max Learning, and I'll be your teacher and guide.
My goal is to make math seem "real" to you, so you'll gain confidence and look forward to your next math challenge.
The fact that you're reading this book means you're eager to succeed and are willing to explore new ways to do so. So let's get started!

Why Is Math A Struggle? How This Book Can Help

Symbols

Math uses symbols, lots of them. It's as difficult to learn as a foreign language.

Mental Manipulatives

You'll learn to "see" three-dimensional objects behind each symbol.

Rules

Math is based on rules, lots of them. It's hard not to confuse one for the other.

BrainAids

You'll learn clever memory hints that make the rules easy and fun.

Trauma

Getting an answer wrong in front of the class, losing at a flash-card competition, failing a test, being criticized by a teacher-all can lead to math trauma.

RUFF

You'll learn to be in a Relaxed, Uncluttered, Focused, and Flowing state of mind, which increases confidence and eases past traumas.

What's Good About Math?

Certainty

Math problems have right answers. In most subjects, like English or Art, the grade you get on an essay or project depends on your teacher's opinion of your work. However, in a Math class, when you get the right answer, no one can argue with it. It's certain!

Quest

Math problems are puzzles. The quest to solve them can be exciting! If you approach it with this attitude, math can be as fun and engaging as any game you'll ever play. Solving problems that others find difficult is very satisfying and makes you feel smart!

Magic

Math is the language of nature. Nearly everything we see, hear, touch and do can be described with math. Every image, color, and sound on a computer is based on math. In today's movies, you can't always tell what's real and what's been generated by some mathematical formula. In short, math is amazing-there's magic in it!

Note to Parents

I've kept the problems in this book simple, so you and your kids could grasp the concepts without getting bogged down in the arithmetic. And

I've tried to make it as interesting and memorable as possible with illustrations, Mental Manipulatives, and BrainAids.

But don't be surprised if your kids don't rush to do math on their own. Except for the rare few who find it fun and challenging, most avoid math like the plague. After all, it's not always easy, and most of us avoid uncomfortable mental effort whenever possible.

But math is a school requirement, students have to learn it, so I try to make it as painless as possible. And many children, once they "see the light" and have tasted success, come to enjoy the subject.

If your child is not motivated to read this book, or has trouble understanding some of the concepts or techniques, I recommend you first learn them on your own, then teach them to your child. It's what I would do in a classroom or tutoring session. I only wrote the book because I can't be everywhere to teach every student. Besides, most of us would rather be shown how to do something rather than having to read about it.

This is a techniques book rather than a drill \& practice book. Check your answers to the Your turn activities in the Answer Key in the back of the book. Then apply these techniques to the numerous problems in traditional math textbooks, or try to make up some problems of your own.

You're learning a new, I hope, more interesting way of doing math. As with learning anything new, it's best not to rush; so relax, take your time, and enjoy the process!

Pronunciation Guide

Sometimes it may not be obvious how to pronounce terms you have not heard spoken.
When you see a term followed by a pronunciation, refer to this guide as needed.

Vowels			Consonants	
Long	Short	Other	Hard	Soft
$\mathrm{aa}=\mathrm{ate}$	$\mathrm{a}=$ act	ai=air, ar=are, aw=paw	$\mathrm{k}=\mathrm{cat}$	$\mathrm{s}=$ ice
ee $=$ eel	e/eh = end		$\mathrm{g}=\mathrm{go}$	$\mathrm{j}=$ gem
ii $=$ hi	i/ih = hid		s/ss = hiss	$\mathrm{z}=$ his
oh = no	aw = on	$\begin{aligned} & \text { oo }=\text { book, or }=\text { for } \\ & \text { ow }=\text { how }, \text { oy }=\text { boy } \end{aligned}$	ch $=$ chin	sh=shin; zh=vision
			th = thin	thh = this
$\mathrm{yu}=\mathrm{use}$	u/uh = up	$\mathrm{uu}=$ too, ur = fur	Accent on: UP-ur-KAASS	

Common Abbreviations

$\mathbf{a k a}=$ also known as
e.g. $=$ for example (think egzample)

> i.e. $=$ that is
> p. $=$ page

FYI = For Your Information

BrainAids

It was a mouthful to say mnemonic (nee-MAWN-ik) device, so I coined the word BrainAid for memory hints that help you learn. Feel free to make up your own BrainAids. Most fall into one of the following "A" categories:

Analogy = Comparison

How to say it: uh-NOWL-uh-jee
What it is: A comparison of what you are trying to learn to what you already know.
Why it works: To learn, new brain fibers must grow and laboriously push their way through dense brain tissue, which can be very tiring. An analogy lets you piggyback new knowledge on top of existing brain fibers, which is quicker and takes much less effort.

Analogy Example: Just as physical exercise builds new muscle fibers, mental exercise builds new brain fibers. Both take time, effort, and repetition.

Acronym = Name

How to say it: AK-roh-nim
What it is: A name made from the first letters of several words. Hint: Think nym = name.
Why it works: The letters of an acronym act like small hooks on which you can hang large words. You memorize a little to remember a lot.

Acronym Example: To maximize your learning, be in a learning frame of mind: Relaxed, Uncluttered, Focused, and Flowing. In other words, be RUFF.

Acrostic = Story

How to say it: uh-KRAW-stik
What it is: A story made from the first letters of several words. Hint: Think stic = story.
Why it works: Sometimes a "story" is easier to remember than an acronym, especially if the acronym is hard to pronounce.
Acrostic Example: You create the acronym MTF to help you remember the names of three new acquaintances, Mary, Tom, and Fred. But MTF is hard to pronounce, so you convert it into the acrostic "쓰y Three Friends."

Acrostic: My Three Friends

Concepts

Math Basics

In Max Learning's Mental Math and Fraction Fun books, we learned several concepts that will help us in Algebra Antics.
Please refer to these books for more details on the following Math Basics concepts.

Mental Manipulative

Traditional manipulatives are physical objects, like tiles or blocks, which you "manipulate" to mimic math operations. Mental manipulatives are items you visualize when you see a number or operation.

They can turn lifeless symbols into reality-at least in your imagination.
And unlike physical manipulatives, mental manipulatives are always with you to make math more engaging. Mental Manipulative include piles, holes, MathBots, and many other items.

MathBots manipulate piles and holes or represent numbers.

Numbers

A number is a symbol for a quantity or value.
Natural Numbers: Counting numbers: 1, 2, 3...
Whole Numbers: Zero + Natural numbers: 0, 1, 2, 3...

0+

Integers: Negatives of Natural numbers + Whole numbers: ...-3, -2, -1, 0, 1, 2, 3...
Rational Numbers: Can be written as ratios.
Consist of integers, fractions, terminating or repeating decimals: $2,1 / 2, .33$
Irrational Numbers: Can not be written as ratios.
Consist of non-repeating or non-terminating decimals: $\pi, \sqrt{2}$
Real Numbers: All rational and irrational numbers.

Imaginary Number: $\sqrt{-1}$ or i
Complex Numbers: Real number with imaginary number: $3+i$

Operators \& Operands

Operand operator Operand

An operator is a symbol for a procedure or relationship between operands.
Operands include: addends, minuends \& subtrahends, multipliers \& multiplicands, dividends \& divisors.

Arithmetic Operators Arithmetic operators specify procedures.	Relational Operators Relational operators specify relationships.
+ Add - Subtract \times - Multiply \div / Divide \pm Plus or Minus	$=$ Equal \neq Not equal to $>$ Greater than $<$ Less than \geq Greater than or equal to \leq Less than or equal to
Computer Operators Many of the common operators do not appear on computer keyboards. Below are alternates, typically used in computer spreadsheet formulas.	BrainAid Be careful not to confuse the > and < symbols. The larger number goes on the larger side. Example: $7>6 ; 6<7$
* Asterisk (aka star) for multiply \wedge Caret [KAIR-et] for exponentiation. <> Not equal to $>=$ Greater than or equal to $<=$ Less than or equal to	

Algorithms

An algorithm [AL-goh-RITHH-um] is a step-by-step procedure.
Algorithms make math operations easier.
Instead of having to figure out what to do each time, you follow the algorithm.
For example, the procedure you follow when doing long division is an algorithm.

BrainAid
Algo go t rithm.
He smartly follows the dance's step-by-step procedure.

PEMDAS

Priority of Operations

When a math problem has more than one operator, work in this order:

- Parentheses: Perform operations inside of parentheses first. If nested, start with the innermost set of parentheses: ($\operatorname{Do} 2^{\text {nd }}$ (do $\left.1^{\text {st }}\right)$).
- Exponentiation: Raise numbers to powers.
- Multiplication/Division: If encounter both, perform in left-to-right order.
- $\underline{\text { Addition/Subtraction: If encounter both, perform in left-to-right order. }}$

Factors

Factors are multipliers that combine to make products.
Factor \times Factor $=$ Product
Example: $2 \times 3=6$, so 2 and 3 are factors of the product 6 .
Factoring is the process of finding a product's factors.
To factor means to extract the multipliers that form a product.
Example: 6 can be factored into 1×6 or 2×3, so the factors of 6 are $1,2,3,6$.

Common Factors are factors that are the same for different products.

1,2 , and 4 are common factors of the products 12 and 20.

Why Factor?

One reason is to make numbers smaller and easier to work with, e.g., reducing fractions to their lowest terms.

4 is the Greatest Common Factor (GCF) of 12 and 20.

Factoring Tricks

Use these tricks to see if a number contains a factor before you waste time trying to extract it.

A product is evenly* divisible by a factor of:

$\mathbf{2}$-If the product is even (i.e., ends in $0,2,4,6$, or 8).
3-If the sum of the product's digits is a multiple of $3(321: 3+2+1=\underline{6})$.
4-If the product's last 2 digits are a multiple of 4 (316).
5-If the product ends in 0 or 5 (765).
6-If the product fits the tricks for both 2 and 3 above ($46 \underline{2}: 4+6+2=\underline{12}$).
7-If the product's $1^{\text {st }}$ digits minus ($2 \times$ the last digit) is 0 or multiple of 7 [112: $\left.11-(2 \times 2)=11-4=7\right]$.
8-If the product's last 3 digits are 000 or a multiple of 8 (2104).
9-If sum of the product's digits is a multiple of $9(864: 8+6+4=\underline{18})$.

* Technically, every number is divisible by every number (except 0), but may not be evenly so; e.g., $10 \div 4=21 / 2$

Composite factors are divisible by 1 , themselves, and at least one other number. Example: 4 is divisible by 1 and 4, but also by 2 .
Prime factors are divisible by 1 and themselves only.
Example: 2 is divisible by 1 and 2 only. The same is true for $3,5,7,11$, etc.
0 and $\mathbf{1}$ by definition are neither composite nor prime.

Tip: To ensure complete factoring, factor until all factors are prime numbers.

Factor Trees

Factor Trees are useful for extracting prime factors.

Tropical Factor Tree

Imagine being on an island with a palm tree containing a coconut. Being hungry, you grip and shake the tree. As the coconut falls, it conveniently splits in smaller pieces full of prime nutrients for you to eat.

Grip and shake the tree to dislodge the coconut (the product of your labor).	As it falls, the coconut splits into smaller pieces (factors).	On the way down, all pieces split into their prime nutrients.

Traditional Factor Tree

To create a Factor Tree without having to call on your artistic ability:

- Draw two branches beneath the product to be factored.
- Extract the smallest prime factor (2, 3, 5, etc.) and place it under the left branch with the composite factor under the right branch.
- Repeat the process with the composite factor until all factors are prime.

Factor Tree

- Box the prime numbers at the bottom of the branches.

GCF: Grip, Catch, Focus

To find the GCF of several products:

- Grip each products' Factor Tree, and shake out its prime factors.
- Catch (circle) factors that are common to all products each time they occur.
- Focus on and magnify (multiply) one set of circled factors to get the GCF.

GCF Paradox The Greatest Common Factor is less than the products it's derived from.

Example: Find the GCF of 8, 12, and 16.

GCF $=2 \times 2=4$

Observe that there are two 2 s that are common to all products, so they are both circled. Observe that only one set of common factors is multiplied to find the GCF. Example of use: Extracting the GCF of 4 from 8, 12, and 16 reduces them to 2, 3, and 4 respectively.

Multiples

Multiples are products created by multiplying a base number times a series of numbers.
Base \times Number $=$ Multiple
Example: $2 \times 3=6$, so 6 is a multiple of base 2 .

			8	Imagine
		6	2	
	4	2	2	as mounds
	2	2	2	built from
2	2	2	2	a base.

Common Multiples are multiples that are the same for different bases.

Number Series					
\times	2	3	4	5	6
Base 2	4	(6)	8	10	(12)
Base 3	(6)	9	(12)	15	18

6 and 12 are common multiples of the bases 2 and 3.

Why Make
 Multiples?

One reason is to find a common number that several bases will dissolve into;
e.g., a common
denominator.

6 is the Least Common Multiple (LCM) of 2 and 3.
LCM is also known as the Lowest Common Multiple.
In fractions, the LCM is the LCD: Least Common Denominator.

LCM: Load, $\underline{\text { Crush, }}$ Mix

To find the LCM of several products, factor each product into prime factors (p.10).

- Load all of the first product's prime factors into a large cooking pot.
- Crush (cross out) factors from the next product/s that are already in the pot. Load what's left.
- Mix (magnify/multiply) the factors in the cooking pot to get the LCM.

Example: Find the LCM of 8, 12, and 16.

Dissolving 8,12 , and 16 into the LCM of 48 results in 6,4 , and 3.
With denominators, the LCM is the LCD: Least Common Denominator. Example of use: $1 / 8+1 / 12+1 / 16=6 / 48+4 / 48+3 / 48=13 / 48$.

Algebra Basics

Term \rightarrow Expression \rightarrow Equation
Let's compare what you already know about English parts of speech to Algebra terminology.

ENGLISH		ALGEBRA	
Word	John	Term	1
conjunction	and	+ or - operator	+
Phrase	John and Mary	Expression	$1+1$
verb	are	relational operator	$=$
Sentence	John and Mary are together.	Equation	$1+1=2$

TERM
A term is a mathematical word.
The + or - operators are mathematical conjunctions that join terms.

EXPRESSION

An expression is a mathematical phrase built from a term or terms.
The relational operators are mathematical verbs that join expressions.

EQUATION

An equation is a mathematical sentence that equates two expressions; e.g., $1+1=2$
An inequality is a mathematical sentence that relates unequal expressions; e.g., $1+1>1$

SENTENCE				
Word John	Phrase Conjunction and	Word Mary	Verb are	Phrase Word together.
EQUATION				
Term 1	Expression Operator $+$	Term 1	Operator $=$	Expression Term 2

Term: CV $^{\text {E }}{ }^{\text {MD }}$

A term is a mathematical word.

English has different types of words: nouns, pronouns, etc. Similarly, math has different types of terms. A term can include any or all of the following components:

- Constants

Numbers that do not vary; e.g., 100 is the number of cents in a dollar.

- Variables

Letters that represent numbers that can vary; e.g., N is the number of cents in your penny jar.

- Exponents

Powers assigned to constants or variables; e.g., $2^{3}, x^{4}$.

- Multiplication

Multiplied components; e.g., $3 x^{2} y$.

- Division

Divided components; e.g., $\mathrm{y}^{3} / 5$.

BrainAid

Acronym: $\mathrm{CV}^{\mathrm{E}} \mathrm{MD}$
Acrostic: CardioVascular Expert-Medical Doctor

Term Families

Imagine that a term is like a person. As each person is a unique blend of body parts, each term is a unique blend of math components. A person belongs to a family whose power is determined by its wealth and social standing. A term belongs to a family whose power is determined by its exponent.

Power	Family	Visual	BrainAid
$\underset{\text { (equals 1) }}{\mathbf{X}^{0}}$	Constant Term Family	1	I'm not very strong.
$\underset{(\text { equals x) }}{\mathrm{X}^{1}}$	Line Term Family	x	
X^{2}	Square Term Family	$\frac{x \lcm{x^{2}}}{x}$	I'm very strong.
x^{3}	Cube Term Family		I'm extremely strong.

Term Operators

Since ' x ' is often used as a variable, avoid using it to show multiplication in algebra.
Instead use a dot, place items next to each other, or use parentheses:

$$
\begin{gathered}
\mathrm{a} \cdot \mathrm{~b} \\
\mathrm{ab}
\end{gathered}
$$

(a)(b)
$a(b+c)$
Use fraction lines for division:
a or a / b
b

Expression: Mono or Poly

An expression is a mathematical phrase built from a term or terms.

Expressions are classified by how many terms they contain.

Coefficient Coworkers

Coefficients [coh-ee-FISH-untz] are constants coupled with variables. Coefficients can be numbers, or letters that represent numbers.

Coefficient vs. Variable Letter Choices

Coefficient letters are typically taken from the beginning of the alphabet (e.g., a, b, c). Although they are placeholders, coefficient letters represent constants, not variables. To avoid confusion, variable letters are typically taken from the end of the alphabet (e.g., x, y, z).

Coefficients

Note
The $2^{\text {nd }}$ and $3^{\text {rd }}$ terms contain x^{1} and x^{0} as in

$$
4 x^{2}+3 x^{1}+2 x^{0}
$$

But $x^{1}=x$, so the exponent is omitted, and $x^{0}=1$, so there's no need to show it.

Equation: Balancing Act

An equation is a mathematical sentence that equates two expressions.

An equation is like a balance scale that must have equal weight (expressions) on both sides to be balanced.

Golden Rule of Equations

Whatever you do to one side, do to the other side.

PROPERTY OF EQUALITY

$$
\begin{aligned}
& \text { If } a=b, \text { then } \\
& a+c=b+c
\end{aligned}
$$

You can add the same amount to both sides.

$$
\mathbf{a}-\mathbf{c}=\mathbf{b}-\mathbf{c}
$$

You can subtract the same amount from both sides.

$$
\mathrm{ac}=\mathrm{bc}
$$

You can multiply both sides by the same amount.

$$
a / c=b / c
$$

You can divide both sides by the same amount.

Algebra: Science of Equations

Algebra is the branch of mathematics that uses equations to join expressions.

Algebra [AL-jeh-bruh] comes from Al Jabr, which is Arabic for "bringing together."

Most people are comfortable with arithmetic. So why do they panic when it comes to algebra? In a word: variables. How strange that letters, which seem so natural and non-threatening when used for words, become frightening when used with numbers. To be successful with algebra, you must make friends with variables.

Variable $=$ Box

A variable is a letter used as a placeholder for a number that can vary.
Variables are sometimes referred to as unknowns, since they represent unknown numbers.
Variables are also known as literal numbers. In this case, literal means "letter."

If we knew all the numbers in a problem beforehand, there would be no need for variables. But in reallife situations, there's usually something we're trying to discover. Variable placeholders allow us to manipulate an equation until we discover the unknown numbers. Imagine that variables are magic boxes that can hold any number-positive, negative, small, or large. Like a genie fitting into a bottle, even a large number can be put into a box without changing its size.

Imagine painting letters on variable boxes so we can identify them by name. The most common letter used is \mathbf{x}, but we can use any letter, upper or lowercase.

Goal of Algebra: What's in the Box?
 Al Jabr says: What's in the box?

Hi, I'm Al Jabr. My name is Arabic for "bringing together," and that's what algebra does. It brings together something we don't know (unknown) with something we do know (given). Algebra uses the given value to find the unknown value.
My body is shaped like a scale. When my arms are

balanced, I have a big smile on my face! | I want to find out how many gold bars are in this |
| :---: |
| treasure boX. It's rusted shut and sure is heavy! |

Al Jabr cleverly adjusted his arms to counter the weight of the boX, so the only thing he was measuring for was the weight of what was inside the boX. Using algebraic [al-jeh-BRAA-ik] language, we can state the problem this way: How many gold bars (unknown) are in the treasure boX, given that its contents are balanced by two gold bars? The obvious answer is two gold bars.

Isolating the Variable: Garbo Rule
Greta Garbo says: I vant to be alone!
Greta Garbo was a movie star in the 1930s who came to shun publicity. She once
We'll use Ms. Garbo's famous lament as a BrainAid, because the variable box also
"wants to be alone." Our goal is to get the box alone on one side of the scale, so that it's
contents are revealed on the opposite side.

Isolating the Variable: Clearly Opposite

To isolate the variable, clear everything away from it with an opposite (aka reciprocal) operation.

- If a term is added to the variable side, clear it by subtracting it from both sides.
- If a term is subtracted from the variable side, clear it by adding it to both sides.
- If the variable is multiplied by a coefficient, clear it by dividing both sides by the coefficient.
- If the variable is divided by a coefficient, clear it by multiplying both sides by the coefficient.

Evaluating an Expression: Plug \& Chug

To evaluate means to "find the value of" an expression given the value/s of its variable/s.

1. Plug in (substitute) the given value/s for the variable/s.
2. Chug ahead and perform the operation.

Example: If $x=2$, what is the value of $3 x+4$?

Proportionality

In equations, proportionality affects how changing one item affects another.

Proportional

Proportional [proh-POR-shun-ul] items increase (or decrease) together to keep the equation balanced.

Inversely Proportional

Inversely Proportional items increase (or decrease) oppositely to keep the equation balanced.

Relation: Pairing Up

A relation is a collection of ordered pairs.
 Ordered Pair: (Boy, Girl)

An Ordered Pair is made of two numbers written inside parentheses in this order: (Domain, Range).

DOMAIN	RANGE
The first numbers of a collection of ordered pairs make up the Domain of the relation.	The second numbers of a collection of ordered pairs make up the Range of the relation.
Domain Numbers = Independent Boys	
Boys enter ordered pairs first, alone and	
independent (1,) (2,).	

Types of Relations: Dating
Imagine boys and girls forming relations for dating.

Cartesian Coordinates: (\mathbf{x}, \mathbf{y})

Cartesian coordinates [car-TEE-zhun koh-OR-di-nutz] are ordered pairs represented by (x, y) displayed on a two-dimensional graph. The word 'Cartesian' comes from Rene Descartes [reh-NAA daa-KART], the $17^{\text {th }}$ century French philosopher/mathematician who conceived the system.

Axes

Two number lines, called axes [AX-eez], intersect at a point called the origin [OR-ih-jin], which corresponds to the ordered pair $(0,0)$.

Quadrants

The x -axis [AX-iss] and the y -axis create four quadrants [KWAW-druntz] or quarters.

BrainAid

Imagine the x -axis divides ground from sky. Imagine the y-axis divides night from day.

Positive is bright and warm.
Negative is dark and cold.
I. Upper right: Day sky $(+x,+y)$
II. Upper left: Night sky $(-x,+y)$
III. Lower left: Cold ground ($-\mathrm{x},-\mathrm{y}$)
IV. Lower right: Warm ground (+x, -y)

Ground

Coordinates

\mathbf{X}-Coordinate: The variable \mathbf{x} independently goes right or left across the Domain (think region or territory).
\mathbf{Y}-Coordinate: The variable \mathbf{y}, whose value is dependent upon \mathbf{x}, goes high up/down the Range (think mountain).
BrainAid: Imagine a king hiking independently across his domain. His elevation in the mountain range is dependent on his position in his domain.
The King's travels: At $(-3,-1)$ he is 3 left and 1 down from the $(0,0)$ origin, which is the center of his kingdom. At $(-1,1)$ he is 1 left and 1 up. At $(1,-2)$ he is 1 right and 2 down. At $(5,3)$ he is 5 right and 3 up from the origin.

Plotting Ordered Pairs: x across, y high

To "plot" an ordered pair means to find then draw and label a point on a Cartesian-Coordinate graph.

To plot (\mathbf{x}, y) stand at the origin $(0,0)$ then:

Think x is across!
If \mathbf{x} is positive, step right.
If \mathbf{x} is negative, step left.

Think y is high!
If \mathbf{y} is positive, leap up.
If \mathbf{y} is negative, dig down.

Make A Point!
Draw a dot and label it with the ordered pair.

Plotting Relations: All over the map

Compare each plot below to the type of relation shown on page 20.

Tip When plotting coordinates, it's easier and more accurate to use graph paper with preprinted grids.

3-D!
FYI: With the addition of a Z-axis running front-to-back, coordinates can be plotted in three dimensions.
($\mathrm{x}, \mathrm{y}, \mathrm{z}$).

Function: Fun at the Junction

A function is a relation where each domain value x has only one range value y.
The value of y is a function of (i.e., depends upon) the value of x .

Discrete vs. Continuous: No line vs. line

Discrete Function plots consist of separate points that cannot be connected by a line. Discrete means separate or distinct. Splitting discrete items (e.g., people, objects, places) into smaller pieces doesn't make sense.
Example: The total cost (range) of toys that cost $\$ 1$ each is a function of the number of toys (domain) purchased.

Continuous Function plots consist of an unbroken line of points.

Continuous items (e.g., time, speed, distance, temperature) can be reasonably split into smaller pieces.
Example: The distance (range) a vehicle going $1 \mathrm{mile} /$ minute travels is a function of the time (domain) it has traveled.

Vertical Line Test: One y per x

If a vertical line can be drawn through two or more points of a relation, it's not a function.
Explanation: Since, by definition, each domain value in a function can have only one range value, functions are limited to Many-to-One or One-to-One relations (p.20).

Standard Function Layout: $\mathbf{y}=\mathbf{x}$

Range variable $=$ Domain expression

$y=x$ expression

Isolating the \mathbf{y} variable on the left makes it easy to see that it's a function of (i.e., depends upon) the \mathbf{x} expression on the right.

If x changes, y changes.
Example: $y=x+1$
If $x=2$, then $y=(2)+1=3$
If $x=3$, then $y=(3)+1=4$

- or -

$\mathbf{f}(\mathbf{x})=\mathbf{x}$ expression

Using $\mathbf{f}(\mathbf{x})$ in place of \mathbf{y} has the advantage of showing the x value that produces the range value, e.g.,

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\mathrm{x}+1 \\
\mathrm{f}(2)=2+1 \\
\mathrm{f}(2)=3
\end{gathered}
$$

$\mathrm{f}(\mathrm{x})$, pronounced f of x, means "function of x," not "f times x."

Function Families

Functions, like the terms they contain, can be classified into families based on the power of their exponents (see Term Families p.13). Each function family has a different shape when graphed.

The arrows on the ends of lines and curves indicate that they continue forever-to infinity!

Constant [KAWN-stunt] Function Family Flat Line	Linear [LIH-nee-ur] Function Family Sloped Line
	$y=x^{1}$ \mathbf{x} \mathbf{y} -2 -2 -1 -1 0 0 1 1 2 1
Quadratic [kwaw-DRA-tik] Function Family Parabola [puh-RA-boh-luh]	Cubic [KYU-bik] Function Family Curve

Operations

One Equation, One Unknown

The simplest algebra problems have One Equation with One first-power (x^{1}) Unknown. For short, we'll call these 1EqUnk [ek-unk] problems.

1EqUnk Added Term ($\mathrm{x}+2=4$)

Goal: What's in the box?
Garbo Rule: Get the box alone.
Clearly Opposite: Subtract the added amount from each side.

Important!
Plug the solution back into the original equation to make sure it's correct.

Check

$$
\begin{aligned}
\mathbf{x}+2 & =4 \\
\mathbf{2}+2 & =4 \\
4 & =4
\end{aligned}
$$

Tips
To avoid errors, keep terms and operators lined up.

Circle the solution.

Your turn: Solve for x by subtracting.

Solve $x+3=4$	Check $x+3=4$	Solve $x+2=5$	Check $x+2=5$
Solve Check $x+5=9 \mid x+5=9$		Solve	Check
		$x+6=15$	$x+6=15$

1EqUnk Subtracted Term ($\mathbf{x} \mathbf{- 2 = 4)}$

Goal: What's in the box?
Garbo Rule: Get the box alone.
Clearly Opposite: Add the subtracted amount to both sides.

Your turn: Solve for x by adding.

Solve $x-3=4$	Check $x-3=4$	Solve $x-4=5$	Check $x-4=5$
Solve	Check	Solve	Check
$x-5=9$	$\mathrm{x}-5=9$	$x-6=15$	$\mathrm{x}-6=15$

Your turn: Solve for x by dividing.

Solve	Check	Solve	Check
$2 \mathrm{x}=6$	$2 \mathrm{x}=6$	$3 \mathrm{x}=6$	$3 \mathrm{x}=6$
Solve	Check		
$4 \mathrm{x}=20$	$4 \mathrm{x}=20$	Solve	Check
		$5 \mathrm{x}=20$	$5 \mathrm{x}=20$

1EqUnk Divided Variable (x/2 = 4)

Goal: What's in the box?
Garbo Rule: Get the box alone.
Clearly Opposite: Multiply each side by the divided amount.

Important!
Plug the solution back into the original equation to make sure it's correct.

$$
\begin{array}{cc}
\text { Check } \\
\frac{\mathbf{x}}{2} & =4 \\
\underline{8} & =4 \\
4 & =4
\end{array}
$$

Tips
To avoid errors, keep terms and operators lined up.

Circle the solution.

Your turn: Solve for x by multiplying.

Solve	Check	Solve	Check
$\frac{x}{2}=6$	$\underline{x}=6$	$\frac{x}{3}=1$	$\underline{x}=1$
2			
Solve			
$\frac{x}{4}=2$	$\underline{x}=2$	$\underline{x}=3$	

Multiple Operations: Clear As Mud

When an equation contains multiple operators, it may not be clear what you should do first.
In fact, it's as clear as mud!
$\mathbf{1}^{\text {st }}$ Clear away any term/s $\underline{\text { Added or Subtracted to the variable. }}$
$\mathbf{2}^{\text {nd }}$ Clear away any coefficient/s from a Multiplied or Divided variable.

	$3 x+7=13$
Clear Added term by subtracting 7 from both sides. Clear Multiplied variable by dividing both sides by 3 .	$\begin{aligned} 3 x+\eta & =13 \\ \frac{-x}{} & \frac{-7}{3} \\ & =\frac{6}{3} \\ \frac{\beta x}{3} & =2 \end{aligned}$ Check $\begin{aligned} 3(2)+7 & =13 \\ 6+7 & =13 \\ 13 & =13 \end{aligned}$

Exception to A/S M/D Order
With some problems, you'll want to first
"throw mud" (multiply
or divide) to clear away or reduce coefficients before clearing added or subtracted terms (see p.32).

Your turn: Solve using the Clear-As-Mud procedure.

| Solve |
| :---: | :---: |
| $2 \mathrm{x}-3=7$ |
| Check |
| |
| |
| 3 |
| |
| |
| |
| Chelve |
| |
| |

Simplifying Terms

Multiple Terms: Family Reunion

In expressions with multiple terms, combine like terms.
Like (aka similar) terms have the same variable/s raised to the same power/s (Term Families p.13).
Draw a box around each term, including its sign.
Draw lines from like terms, and combine them into single terms.
Place the highest power term on the left and proceed in descending order: x^{2}, x^{1}, x^{0}.
BrainAid: Imagine like terms combining together at family reunions.
Each family's value is a mix of the positive and negative personalities (coefficients) of its members.

Your turn: Simplify the expressions by holding Family Reunions.

Simplify	
$4 x-6+3 x+1$	$-4 x+6+2 x+3+x^{2}$
$2 x+7-4 x^{2}-6+3 x+x^{2}$	$5 x+2-7 x^{2}-6 x+3 x^{2}+1$

Separated Terms: Take Sides

If like terms are on opposite sides of the equal sign, move them to the same side and combine.

> Your turn: Simplify
> $4 \mathrm{x}-3=5+2 \mathrm{x}$

Which Side?

It's traditional to move variables to the left side, but not mandatory.
For example, $\mathbf{x}=\mathbf{1}$ is the same as $\mathbf{1}=\mathbf{x}$
It's preferable to move variables to the side that results in a positive coefficient.
$+1=2 x$
$1=\frac{-x}{x}$

Distributed Terms: Fair to All

If terms in parentheses are multiplied by an outer term, distribute equally to every inner term.
Take special care to distribute negatives correctly.

Simplifying Coefficients: Throw Mud

To simplify coefficients, it may help to "throw a little mud" at them first.

Clear Denominators: Magnify by LCM

To clear constants or variables that appear in denominators, throw mud to multiply all terms by the LCM (p.11). This is the same as multiplying each side by the same amount, so the equation remains equal. If only one term has a denominator, it's the LCM, so multiply all terms by it.

Reduce Coefficients: Dissolve with GCF

To reduce coefficients, throw mud by dividing the GCF (p.10) into each term.
If the variable coefficient is negative, divide by a negative GCF.

Simplify $\begin{aligned} 4 x+8 & =16 \\ \begin{array}{c}\text { Dissolve } \\ \text { with GCF } \\ \text { of } 4 .\end{array} & \frac{4 x+\dot{8}}{}=16\end{aligned}$$x+2=4$	
Dissolve with GCF of -2 to make the x coefficient positive.	Simplify
	$-2 x+6=-4$
	$\underline{-2 x+\hat{6}}=-4$
	$x-3=2$

Your turn: Simplify
$6 x+2=8$

Fractional Terms

Clearing Equated Fractions: Shoot-the-Chute

When fractional expressions are set equal to each other, cross multiply to clear their fractions and isolate the variable.

Your turn: Shoot-the-Chute to clear the fractions and isolate the variable.

$\frac{3}{5}=\frac{1}{x}$	$\frac{2 x}{3}=\frac{3}{7}$	$\frac{5}{2}=\frac{4}{3 x}$

Combining Fractions: Spotlighting!

As an alternative to clearing denominators by magnifying with the LCM (p.32), use the spotlighting technique to create equivalent fractions. (See Max Learning's Fraction Fun: Xdm/Sh!). If the original denominators are not prime numbers, factor them and "crush" any common factors before spotlighting.

Tip: To isolate x from here, use Shoot-the-Chute (p.33).

Your turn: Spotlight to combine fractions.

$\frac{x}{5}+\frac{x}{2}=3$
$\frac{2 x}{3}-\frac{x}{2}=8$

Crush \& Spotlight

Your turn: Crush \& spotlight to combine fractions.

$\frac{2 x}{3}+\frac{x}{6}$	$=7$
$\frac{3 x}{4}-\frac{5 x}{8}$	$=9$

Two Equations, Two Unknowns

Some algebra problems involve Two Equations with Two first-power ($\mathrm{x}^{1} \& \mathrm{y}^{1}$) Unknowns, aka simultaneous equations or a system of equations. Their solution, if one exists, is the ordered pair (p.20) that satisfies both equations. For short, we'll call these 2EqUnk [ek-unk] problems.

Dilemma

If you have two equations each with two boxes (variables) on a scale, it's not obvious how to isolate either box to see what it contains.

Remedy
Use Elimination (p.36) or Substitution (p.40) to transform the two equations into one equation with one unknown (1EqUnk p.25). Solve it, and use its solution to find the value of the second unknown variable.

Possible 2EqUnk Outcomes 2EqUnk equations belong to the Linear Function Family (p.24), so each equation will graph as a sloped line.		
Intersecting Lines The solution is the point where the two lines cross	Identical (Collinear) Lines The solution is every point on each line.	Parallel [PAIR-uh-lel] Lines There is no solution, as parallel lines never touch.

Spelling Tip

To spell "parallel," imagine you have a friend named El who likes to golf. To wish him luck, you say, "I hope you par all El!"

2EqUnk Elimination: You're outa here!

Use Elimination when both equations are in $a x+b y=c$ form.

1. Combine the 2 EqUnks so as to eliminate either variable (pick the easier one).
2. Solve the resulting 1 EqUnk to get the value of its variable.
3. Plug that value into either original equation, and solve for the eliminated variable.
4. Check the (x, y) solution in both original equations.

Add to Eliminate

Add equations that have matching, oppositely-signed variable terms.

Solve
$\mathbf{x}+\mathbf{y}=2$
$\mathbf{x}-\mathbf{y}=2$

1. Add to eliminate y

$$
\begin{aligned}
x+y & =2 \\
+x-\Varangle & =2 \\
2 \mathrm{x} & =4
\end{aligned}
$$

It's sufficient to Plug \& Chug (p.18) just one equation, but always check both equations.

Subtract to Eliminate

Subtract equations that have matching, same-signed variable terms.

It's sufficient to Plug \& Chug (p.18) just one equation, but always check both equations.

Your turn: Add to eliminate and solve.

$x+2 y=5$
3. Plug \& Chug
4. Check

2. Solve 1EqUnk
4. Check

Your turn: Subtract to eliminate and solve.

Multiply Then Eliminate

If the equations have no matching variable terms, multiply to create them.

No matching terms $\begin{aligned} & 3 x+2 y=4 \\ & 2 x-y=3 \end{aligned}$
Multiply to eliminate y
$3 x+2 y=4$
$2(2 \mathrm{x}-\mathrm{y}=3)$
Eliminate
$3 x+2 y=4$
$+\underline{4 x-2 y}=6$
$7 \mathrm{x}=10$

No matching terms
$2 x+3 y=5$
$x+2 y=2$
:---:
$2 x+3 y=5$
$-2(x+2 y=2)$
Eliminate
$2 x+3 y=5$ +$-2 x-4 y$ $2 x$ $-y=1$

No matching terms $\begin{array}{r} 3 x+4 y=7 \\ -2 x+3 y=1 \end{array}$
Multiply to eliminate x $\begin{aligned} & \xrightarrow[2(3 x+4 y=]{2+1)} \\ & 3(-2 x+3 y=1) \end{aligned}$ Eliminate $\begin{aligned} 6 x+8 y & =14 \\ +\quad-6 y+9 y & =3 \\ \hline 17 y & =17 \end{aligned}$

Your turn: Multiply then eliminate.

$4 x+3 y=5$
$2 x-y=1$
:---:

$\left.\begin{array}{|c|}\hline 3 x+3 y=1 \\ x+2 y=5\end{array}\right]$ Multiply to eliminate x Eliminate \quad.

$$
\begin{aligned}
& 3 x+3 y=8 \\
& 2 x-2 y=3
\end{aligned}
$$

Multiply to eliminate y

In each case, you could choose to eliminate the opposite variable. The ultimate solution would be the same.

2EqUnk Substitution: Identical Twins

Use Substitution when one of the equations has an isolated x or y variable, or when one of the variables is relatively easy to isolate.

1. Substitute the isolated variable's equivalent expression into the other equation.
2. Solve the resulting 1 EqUnk to get the value of the other variable.
3. Plug the other variable's value into the isolated variable's equation and solve.
4. Check the (x, y) solution in the other equation.

Your turn: Substitute to solve.

Solve
$y=2+x$
$x+y=6$
:---:
2. Solve 1EqUnk

3. Plug \& Chug

$$
y=2+x
$$

Solution

$$
(\mathbf{x}, \mathbf{y})=(\ldots, \ldots)
$$

2EqUnk Identical or Parallel: All or Nothing

If elimination or substitution result in variable-less equalities, the lines produced are identical (aka collinear koh-LIN-ee-ur). This occurs when one equation is a multiple of the other.
EQUALITY = IDENTICAL

If elimination or substitution result in variable-less inequalities, the lines produced are parallel. This occurs when the equations have the same coefficients but different constants.
INEQUALITY $=$ PARALLEL

Identical lines share all points.

Parallel lines share no points.

Linear Equations

Equations involving x^{1} are called first-degree or Linear [LIHN-ee-ur] Equations.
When graphed, Linear Equations produce lines.
We'll call Linear Equations LinEqs [lin-eks] for short.

- Standard form for a one-variable LinEq is $\mathrm{ax}+\mathrm{b}=\mathrm{c}$ (see 1EqUnk p.25).
- Standard form for a two-variable LinEq is ax + by $=\mathrm{c}$ (see 2EqUnk p.35).
- Standard form for the Linear Function is: $\mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{b}$ (see Function p .23).

Trap! The ' b ' in $a x+b y=c$ is different from the ' b ' in $f(x)=m x+b$.

Slope-Intercept Form: $\mathbf{y}=\mathbf{m x} \mathbf{+} \mathbf{b}$

Slope-intercept form makes it easier to visualize and graph lines on Cartesian axes (p.20). The y-coefficient must be +1 . The x-coefficient ' m ' is the slope. The constant ' b ' is the y-intercept. We can convert a standard two-variable LinEq to slope-intercept form by isolating the y variable.

Your turn: Convert to slope-intercept form. $-4 x+2 y=6$

Nature of LinEqs

LinEqs represent things that occur or change at a constant rate.
Problem: Starting 1 mile from home, Tia walks at a steady rate of 1 mile per hour towards the next town. How many miles from home is she after 2 hours?
Analysis: This is a Distance $=$ Rate \cdot Time ($\mathrm{D}=\mathrm{RT}$) travel problem (p.64) that fits neatly into slope-intercept form with $y=\underline{\text { Distance }}$, $\mathrm{m}=\underline{\text { Rate }}, \mathrm{x}=\underline{\text { Time }}$, and $\mathrm{b}=$ starting point.
$\mathbf{y}=\mathbf{m x}+\mathbf{b}$
D $=\mathbf{R T}+\mathbf{b}$
Plugging in the given values:
$\mathrm{D}=1 \underset{\text { hour }}{\text { mile }} \cdot 2$ hours +1 mile
$\mathrm{D}=2$ miles $\quad+1$ mile
D $=3$ miles
Solution: Starting 1 mile from home, after 2 hours of walking, Tia was 3 miles from home.

This graph shows Tia's distance (miles) from home for the time (hours) that she walked.

The usual solution to a LinEq problem is a single point, but the line produced by the LinEq displays all possible solutions, e.g., after 3 hours of walking, Tia was 4 miles from home.

Slope: $\mathbf{m}=$ mountain

In the $\operatorname{LinEq} y=m x+b$, ' m ' equals the slope. The slope determines the direction and steepness of a line.

Direction of Slope

Slope $=$ Rise/Run

Slope is the ratio of a line's rise (up/down) over its run (left/right).
BrainAid: Imagine steps that rise and run along the mountain slope to make it easier to climb or descend.

Calculating Slope: $\Delta \mathbf{y} / \Delta \mathbf{x}$

$\frac{\text { Rise }}{\text { Run }}=\frac{\Delta y}{\Delta x}=\frac{\text { change in } y}{\text { change in } \mathrm{x}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$
The delta symbol Δ means "change in."
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ represent any two points on a line.

Drop, Rotate, \& Subtract

To minimize slope-calculation errors, drop y's down, rotate x's around, then subtract.

Your turn: Drop, Rotate, \& Subtract to find the slopes.

$(3,7)(2,5)$	$(-3,7)(-2,5)$	$(-3,-7)(-2,-5)$

Y-intercept: $\mathbf{b}=\mathbf{b a l l}$

In the $\operatorname{LinEq} y=m x+b, \quad$ ' ' equals the y-intercept. The y-intercept is the point where a line crosses the y-axis. The y-intercept occurs when $x=0$.

BrainAid: Imagine a ball rolling down a slope being intercepted by the y-axis.

X-intercept: $\mathbf{x}=\mathbf{- b} / \mathbf{m}$

The x -intercept is the point where a line crosses the x -axis.
The x -intercept occurs when $\mathrm{y}=0$.

y	$=m x+b$
$\mathbf{0}$	$=m x+\underline{b}$
$\underline{-b}$	
$\frac{-b}{m}$	$=\frac{\underline{m x}}{m}$
$\frac{-b}{m}$	$=x$

BrainAid

Imagine the x -axis intercepting a negative ball (-b) over a mountain (-b/m).

BrainAid: Imagine a ball rolling down a slope being intercepted by the x-axis.
$\left.\begin{array}{|c|c|c|}\hline \mathbf{y}=\mathbf{x}+\mathbf{2} & \mathbf{y = \mathbf { x }} \\ \mathrm{m}=1 ; \mathrm{b}=2 \\ -\mathrm{b} / \mathrm{m}=-2 / 1=-2\end{array}\right)$

Plotting LinEqs

It takes a minimum of two points to define a line. You have several plotting options.

Plot using y-intercept and slope

Use with slope-intercept $y=m x+b$ form.

1. Draw the y-intercept point on the y-axis.

Your turn: Plot using y-intercept and slope.
2 . From that point, follow rise/run to the $2^{\text {nd }}$ point.

Parallel \& Perpendicular Line Slopes

Given two separate lines with slopes m_{1} and m_{2} :

- If $\mathrm{m}_{1}=\mathrm{m}_{2}$, the lines are parallel (never touch).
- If $\mathrm{m}_{1} \cdot \mathrm{~m}_{2}=-1$, the lines are perpendicular [pur-pen-DIH-kyu-lur] (cross at 90° angles).

Quadratic Equations

Equations involving x^{2} are called second-degree or Quadratic [kwaw-DRA-tik] Equations. When graphed, Quadratic Equations produce bowl-shaped parabolas (p.24).

We'll call Quadratic Equations QuadEqs [kwaw-deks] for short.
The Quadratic Function is $f(x)=a x^{2}+b x+c$ (see Function $p .23$). $\mathrm{ax}^{2}=$ quadratic term, $\mathrm{bx}=$ linear term, $\mathrm{c}=$ constant term
same as y.

Standard Form: $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=\mathbf{0}$

A standard QuadEq is a special case of the Quadratic Function where $f(x)=0$.
Traditionally, the 0 is moved to the right side of the equation.
A standard QuadEq is a trinomial (p.14), but it can be a binomial or monomial as follows:

$$
\text { If } c=0: a x^{2}+b x=0 \quad \text { If } b=0: a x^{2}+c=0 \quad \text { If } b=0 \& c=0: a x^{2}=0
$$

Question: Since "quad" implies "four," why don't QuadEqs involve x^{4} instead of x^{2} ? Answer: "Quad" comes from the Latin "quadrate" which means "squared numbers." Also, "quadrus" means "square." FYI: Equations with x^{4} are called Quartic Equations.

A square has 4 sides.

Nature of QuadEqs

QuadEqs represent things that occur or change at variable rates.

QuadEq Example

Through observation and experiment, scientists devised a quadratic equation that gives the height (at any time during its flight) of an object shot or thrown straight up into the air.
They named it the Position Function.
$h(t)=\mathbf{- 1 6 t} \mathbf{t}^{2}+\mathbf{t}+h$
$h(t)=$ height (feet) as a function of time in flight
$-16=$ gravitational pull (feet/second per second)
$\mathrm{t}=$ time (seconds)
$\mathrm{v}=$ initial velocity (feet/second)
$\mathrm{h}=$ initial height above ground (feet)
Problem: A cannonball is shot straight up from the ground. Its initial velocity is 160 feet/second, but it's slowed by the pull of gravity, stops, reverses direction, and returns to earth. How long was its flight?
Analysis: The cannonball starts on the ground, so its initial height h is 0 feet. When it lands after t seconds, its height $h(t)$ as a function of time is also 0 feet.
If we reverse the Position Function, the problem neatly fits into a standard form QuadEq with $\mathrm{a}=-16, \mathrm{x}^{2}=\mathrm{t}^{2}, \mathrm{~b}=\mathrm{v}, \mathrm{x}=\mathrm{t}, \mathrm{c}=\mathrm{h}$:

$$
\begin{aligned}
\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c} & =\mathbf{0} \\
-16 \mathrm{t}^{2}+\mathrm{vt}+\mathrm{h} & =\mathrm{h}(\mathrm{t}) \\
-16 \mathrm{t}^{2}+160 \mathrm{t}+0 & =0 \\
-16 \mathrm{t}(\mathrm{t}-10) & =0 \quad \text { Factoring out }-16 \mathrm{t} .
\end{aligned}
$$

$$
\mathrm{t}=0 \text { or } \mathrm{t}=10 \quad \text { Either } \mathrm{t} \text { makes the equation equal } 0 \text {. }
$$

Although it may look like the ball's flight path, this graph shows a "time" path. The cannonball went straight up and down.

Time t (seconds)
The usual solution to a QuadEq is one or both x-intercepts, where $f(x)=0$. However, the graph shows all heights at any time during flight, e.g., at 5 seconds, the cannonball reached a maximum height of 400 ft .

Solution: The ball is launched from the ground at $\mathrm{t}=0$ seconds and returns to the ground when $\mathrm{t}=10$ seconds.

Analyzing Coefficients: Easy as a-b-c

Knowing the effects of each coefficient (p.14) can make it easier to visualize and graph QuadEqs.

$y=\underline{\mathbf{a}} \mathbf{x}^{\mathbf{2}}$: almost like slope

' a ' sets direction and steepness (like the slope ' m ' in a LinEq p.43).

- Negative 'a' creates an inverted parabola (bowl down).
- Positive 'a' creates an upright parabola (bowl up).
- Larger 'a' creates steeper sides (narrower bowl).
- Smaller ' a ' creates flatter sides (wider bowl).

$$
y=a x^{2}+\underline{b} x: \underline{b o w l} \text { over }
$$

'b'moves the parabola's bowl up or down \& left or right.
At $x=0$, 'b' has no effect, so the y-intercept becomes the pivot point.

Upright Bowl Moves Down		Inverted Bowl Moves Up	
+b moves bowl left	-b moves bowl right	-b moves bowl left	+b moves bowl right

$$
\mathbf{y}=\mathbf{a x}+\mathbf{b x}+c: \text { intercept }
$$

' c ' is the y-intercept-where the parabola crosses the y-axis.

$$
\begin{gathered}
\text { When } x=0 \text { : } \\
\begin{array}{c}
y=a(0)^{2}+b(0)+c \\
\mathbf{y}=\mathbf{c}
\end{array}
\end{gathered}
$$

BrainAid Imagine a comet being intercepted by the y-axis.

-b/2a: x-vertex

$-\mathrm{b} / 2 \mathrm{a}$ is the x -coordinate (x_{v}) of the vertex-which is exactly halfway between the x -intercepts. To find the y-coordinate $\left(y_{v}\right)$ of the vertex, substitute $(-b / 2 a)$ for x and solve.

Upright Parabola
 Vertex $=$ bottommost or minimum point

Inverted Parabola
Vertex $=$ topmost or maximum point

Multiplying \& Factoring Expressions

Multiplying and factoring are opposite operations.

Traditional Techniques

Multiply Monomial - Binomial		Factor Binomial	
$\begin{aligned} & \overbrace{\mathrm{x}(\mathrm{x}+2)} \\ & \mathrm{x}^{2}+2 \mathrm{x} \end{aligned}$	Distribute x over $(\mathrm{x}+2)$ Result: binomial	$\begin{aligned} & x^{2}+2 x \\ & x(x+2) \end{aligned}$	Extract GCF (p.10) of x Result: monomial • binomial
Multiply Binomial - Binomial		Factor Trinomial	
$\begin{array}{ll} (\underbrace{x+2)}_{(1)} & \begin{array}{l} \text { Distribute } x \text { over }(x+2) \\ \text { Distribute } 1 \text { over }(x+2) \end{array} \\ \begin{array}{l} \text { First outside Inside Last } \\ x^{2}+2 x+x+2 \end{array} & \text { Combine ' } x \text { ' terms. } \\ x^{2}+3 x+2 & \text { Result: Trinomial } \end{array}$ This is commonly called the FOIL method for its distribution order: First, $\underline{\text { Outside, }} \underline{\underline{I} n s i d e, ~ L a s t . ~}$		$\begin{aligned} & x^{2}+3 x+2 \\ & (x \quad)(x \quad) \\ & (x+1)(x+2) \end{aligned}$ This method usu Outside/Inside produc	Factor First term Factor Last term Result: binomial • binomial requires trial and error until the combine to produce the middle term.
Multiply + and - Binomials		Factor Difference of 2 Squares	
$\begin{aligned} & x^{2}-2 x+2 x-4 \\ & x^{2}-4 \end{aligned}$	Distribute x over ($\mathrm{x}-2$) Distribute 2 over ($\mathrm{x}-2$) Combine x terms. Result: Difference of 2 Squares	$\begin{aligned} & x^{2}-4 \\ & (x \quad)(x \quad) \\ & (x+2)(x-2) \end{aligned}$	Factor $1^{\text {st }}$ term Factor $2^{\text {nd }}$ term Result: + and - binomials

Your turn: Multiply or factor the following expressions.

Multiply $x(x+3)$	$\begin{gathered} \text { Multiply } \\ (x+2)(x+3) \end{gathered}$	$\begin{gathered} \text { Multiply } \\ (x+3)(x-3) \end{gathered}$
$\begin{gathered} \text { Factor } \\ x^{2}+3 x \end{gathered}$		
$\begin{gathered} \text { Multiply } \\ 2 x(x+3) \end{gathered}$	Factor $x^{2}+5 x+6$	$\begin{gathered} \text { Factor } \\ x^{2}-9 \end{gathered}$
$\begin{gathered} \text { Factor } \\ 2 x^{2}+6 x \end{gathered}$	Tip: Factor 6 into $2 \cdot 3$.	

Cat Techniques

Here are some fun and memorable way to multiply binomials and factor trinomials.

Multiply Binomial 'Eyes" into Trinomial Expression			
Raise 1st Ear Multiply first terms	Raise 2nd Ear Multiply last terms	Make Nose \& Mouth Multiply inner/outer terms	Drop Tongue Add inner/outer products
			Flick middle term to top.

Your turn: Multiply the cat's binomial eyes to create its face and a trinomial expression.

Raise 1st Ear

Multiply first terms

$$
(x+2)(x+3)
$$

Make Nose \& Mouth
Multiply inner/outer terms

Raise 2nd Ear
Multiply last terms

Drop Tongue
Add inner/outer products

Factor Trinomial Expression into Binomial 'Eyes"

Drop 1st Ear Factor first term	Drop 2nd Ear Factor last term	Nose \& Mouth Check Multiply inner/outer terms	Tongue Taste Test Add inner/outer products
$\overbrace{(x \quad 3 x+2}^{x^{2}+3 x})$	$\underbrace{x^{2}+3 x+2}_{(x+1)(x+2)}$		Yum! Middle terms match!

Your turn: Factor the trinomial expression to create a cat's face with binomial eyes.

$$
x^{2}+5 x+6
$$

Drop 1st Ear
Factor first term

Drop 2nd Ear
Factor last term

Nose \& Mouth Check

Multiply inner/outer terms

Tongue Taste Test
Add inner/outer products

Cat Traps \& Tips

Factoring Trap: Cat Won't Eat!

Cat won't eat! Sum of inner/outer products doesn't match middle term.	List Ingredients List all possible factors for first and last terms.	Prepare Food Combine sets of factors, cross multiply, and add.	Feed Cat Use a food combination that matches the middle term.
	$\frac{2 \mathrm{x}^{2}}{2 \mathrm{x} \cdot \mathrm{x}}+7 \mathrm{x}$ $+\frac{6}{1 \cdot 6}$ $\mathrm{x} \cdot 2 \mathrm{x}$ $2 \cdot 3$ List first List in term's factors $1,2,3,4 \ldots$ forwards and order so backwards so don't cover all combinations. overlook factors.	$x+12 x$ $2 x+6 x$ In this case, only the fourth combination adds to 7 x .	

Your turn: Factor the trinomial and feed the cat.

List Ingredients	Prepare Food	Feed Cat
$\mathbf{3 \mathbf { x } ^ { 2 }} \mathbf{-} \mathbf{8 x} \mathbf{+ 4}$		
Tip: The factors of +4		
must be negative to get a -8		
in the middle.		

Factoring Tip: Analyze the Food!

List Ingredients List all possible factors for first and last terms.	Prepare Food Analyze the middle term to narrow down combinations. Cross multiply and add to find acceptable food.	Feed Cat Use a food combination that matches the middle term.
	Analysis: This problem has $4 \cdot 4=16$ combinations!! But the large middle term -47 x suggests we first test combinations that multiply our largest factors 6 and 8 . Luckily, it took only two tries to get the right food!	

Solving QuadEqs

To solve a QuadEq, put it in standard form and find its x-intercept/s (aka root/s).
Standard form sets the QuadEq to zero: $a^{2}+b x+c=0$.
The value/s of x that make $f(x)=0$ are the x-intercepts (x across, zero high/low).
If the parabola produced by a QuadEq touches the x -axis, the solutions are real numbers (p .6)
If the parabola does not touch the x -axis, the solutions are imaginary numbers (p.55).

Two real-number solutions	One real-number solution	Imaginary-number solution/s
Two x-intercepts		

Zero-Product Principle

If a product is zero, at least one of its factors must be zero.

If $\mathrm{a} \cdot \mathrm{b}=0$	If $(x)(x+1)=0$	If ($\mathrm{x}-1)(2 \mathrm{x}$
then	then	then
a $=0$ and/or	$x=0$	$\begin{aligned} & x-1=0 \\ & x=1 \end{aligned}$
		and/or
$b=0$	$\begin{aligned} & x+1=0 \\ & x \quad=-1 \end{aligned}$	$2 x+1=0$
	$x=-1$	$x=-1 / 2$

Your turn: Apply the Zero-Product Principle to solve for the value/s of x.

$2 x(x+3)=0$	$(x-3)(x+2)=0$	$(2 x-1)(3 x-6)=0$

Solving QuadEqs by Cat Factoring

Your turn: Factor and solve.

List Ingredients	Prepare Food	
$x^{2}+6 x+9=0$		Feed Cat
Apply Zero-Product Principle		

Solving QuadEqs with Quadratic Formula

A QuadEq that can't be factored is called prime.
Use the Quadratic Formula to discover its x-intercepts.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This complicated-looking formula was derived from $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ using a process called Completing the Square. It looks scary, but it's simple to use: Substitute the values of the coefficients a, b, and c , then evaluate the expression.

The result will be the x -intercept/s.

Discriminant [di-SKRI-mi-nunt]: $\mathbf{b}^{\mathbf{2}} \mathbf{- 4 a c}$

If the discriminant (the expression inside the square root radical sign) evaluates to a:

- Perfect square (e.g., $0,1,4,9,16 \ldots$..)—Solutions are rational real numbers (p.6).
- Positive number (e.g., 2, 3, 5, 6...)—Solutions are irrational real numbers (p.6).
- Negative number (e.g., $-1,-2,-3,-4 \ldots$)—Solutions are imaginary/complex numbers (p.55).

When factoring won't work...		...use the Quadratic Formula
	The solutions are irrational real numbers.	

Your turn: When factoring won't work...	...use the Quadratic Formula
	$\begin{gathered} a=\ldots, b=\ldots, c=\ldots \\ x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \end{gathered}$

Components of the Quadratic Formula

Imaginary/Complex Number Solutions

If the discriminant evaluates to a negative number, the QuadEq has an imaginary number solution.

Imaginary Number \boldsymbol{i}

When first encountered, $\sqrt{-1}$ was thought to be an impossibility, because squaring a root was always thought to produce a positive square, e.g., $1 \cdot 1=+1$ and $-1 \cdot-1=+1$.

$$
\text { And yet, } \sqrt{-1} \cdot \sqrt{-1}=-1
$$

So, to contrast it with the real numbers (rational and irrational), $\sqrt{-1}$ was dubbed an "imaginary" number and represented by the italicized variable i.

$$
i=\sqrt{-1}
$$

In a sense, all numbers are "imaginary" because they only represent what is real. But in fact, i does represent real phenomena that occur in nature, particularly in the area of subatomic particles.

Complex Number

$$
\begin{gathered}
3 \mathbf{x}^{2}+\mathbf{4 x + 2}=\mathbf{0} \\
a=3, b=4, c=2 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-4 \pm \sqrt{4^{2}-4(3)(2)}}{2(3)} \\
x=\frac{-4 \pm \sqrt{16-24}}{6} \longrightarrow \sqrt{-8} \\
x=\frac{-4 \pm 2 \sqrt{2} \sqrt{-1}}{6} 2 \sqrt{4(-2)} \\
\frac{-2 \pm i \sqrt{2}}{3}
\end{gathered}
$$

A complex number consists of a real number and an imaginary number. Example: $3+i$

Word Problems

Of all areas of math, word problems (aka story problems) cause the most headaches. Why? Because they're written in words! It's sometimes tough to translate imprecise English words into precise math symbols. For all the anxiety they cause, I sometimes call word problems "worry" problems. But if you like to solve puzzles, this is where the fun begins!

Word Problem IDEAS

Use IDEAS to Identify/Draw/Equate/﹎ㅗssign/Solve word problems.

IDEAS	Explanation	Example
Identify	Identify the problem type. Nothing will aid you more in finding a solution. See Word Problem Types (p.58) for a list and references to page numbers with examples.	Problem: How much did Sam pay for three $\$ 2$ beach balls? Type: Cost problem CPK (p.71)
Draw	Draw simple pictures or symbols of the items in the problem. Label values and units of measure. This will help you "see" beyond the words, which can be confusing.	
Equate	Equate the given and unknown values into a "word" equation. Use the English-toMath Chart (p. 57) as needed. Underline sets of words that represent values.	Cost paid equals price for one ball times the quantity of balls.
$\underline{\text { Assign }}$	Assign a variable to each set of underlined words in the "word" equation. Predefined equations may use specific variables.	$\mathrm{C}=\mathrm{PK}$
Solve	Solve for the unknown variable/s by plugging in given values, including units. Keep items vertically aligned. Circle the answer/s. Unit Analysis: Make sure the units of measure work out appropriately (p.60). Convert Units: As needed (p.75). Check: Plug values back into the equation/s to verify your answer/s.	$\begin{aligned} & C=\$ 2 / b \pi I l(3 \mathrm{batls}) \\ & \mathrm{C}=\$ 6 \end{aligned}$ Check $\begin{aligned} & \mathrm{C}=\mathrm{PK} \\ & 6=2(3) \\ & 6=6 \sqrt{ } \end{aligned}$

Although you can probably solve most of the purposely-simple demonstration problems that follow without doing so, take time to complete each of the IDEAS steps, so that you'll be prepared to set up and solve more complex problems you may encounter in the future.

English-to-Math Chart

This chart lists words used in word problems and their math equivalents. Add more examples to the chart as you encounter them.
One of the major hurdles you'll encounter in word problems is the tremendous number of ways that the same thing can be said with different words. And sometimes the same word can have different meanings.
For example, the word "of" can mean either multiplication or division depending on how it is used.

ENGLISH	MATH	Sample Sentences	Equation
$>$ equal \Rightarrow is $>$ are $>$ has $>$ had	$=$	* Ann is the same age as Bob. * Ann and Bob are equal in height. * Ann has as many items as Bob.	$A=B$
$>$ add $>$ sum $>$ plus $>$ more $>$ greater $>$ older $>$ increased by	+	* Cal has 3 more items than Deb. * Cal is 3 years older than Deb. * Cal's share increased by 3 over Deb's.	$\mathrm{C}=\mathrm{D}+3$
$>$ subtract $>$ difference $>$ minus $>$ less $>$ fewer $>$ younger $>$ remainder $>$ left	-	* Earl has 4 items fewer than Fran. * Earl is 4 years younger than Fran. * Earl got what was left after Fran used 4.	$\mathrm{E}=\mathrm{F}-4$
multiply product times times as many as @ (at) increased by a factor of	\bullet	Gene has 5 times what Hal has. © Gene has 5 times as many as Hal. - Gene bought 5 items @ \$H each.	$\mathrm{G}=5 \mathrm{H}$
$>$ divide $>$ quotient $>$ split \Rightarrow per $>$ reduced by a factor of	/	* Ida's share was Jo's share divided by 6 . * Ida's share equals Jo’s split 6 ways. * Ida equals Jo's reduced by a factor of 6 .	$\mathrm{I}=\mathrm{J} / 6$
$>$ fraction of	-	* Gene has half of what Hal has.	$\mathrm{G}=1 / 2 \mathrm{H}$
$>$ whole number of	/	* Ken has 2 of 3 items.	$\mathrm{K}=2 / 3$

Word Problem Types

Many word problems use predefined equations that are based on patterns discovered in nature, math, or science. Below are some of the more common equation patterns and their problem types.

```
Q=RK (kyu-rik) Problems
            Q: Quantity
            R: Rate of change of Q/K
            K: Kwantity (made-up word)
                Q = RK Kunits
                            Q = QK
                                    leaving only
                            Q units
            Alternate equations
                            R=Q/K; K=Q/R
                    Travel Problems
                        D=RT (p.64)
    Distance = Rate of travel - Time
    (Distance = Distance/Time - Time)
            D=MV (p.67)
    Distance = Mileage rate - Volume
        (Miles = Miles/Gallon • Gallons)
            Cost Problems
            C=PK (p.71)
        Cost = Price rate - Kwantity
        (Cost = Price/Unit • Units)
            Work Problems
            W=RT (p.73)
    Work = Rate of work - Time
    (Work = Work/Time • Time)
```


Coin Problems

```
\(\mathrm{T}=\mathrm{VC}\) (p.72)
Total value \(=\) Value of coin \(\cdot\) Coin quantity
(Value \(=\) Value/Coin \(\cdot\) Coins)
Conversion Problems
\(\mathrm{N}=\mathrm{CO}\) (p.75)
New units = Conversion Rate • Old units
(New = New/Old • Old)
```


Physical Problems

```
\(\mathrm{W}=\mathrm{EI} \dagger\)
Weight \(=\) Each's weight \(\cdot\) Items
\((\) Weight \(=\) Weight/Item • Items \()\)
\(\mathrm{M}=\mathrm{DV} \dagger\)
Mass \(=\) Density \(\cdot\) Volume
\((\) Mass \(=\) Mass \(/\) Volume \(\cdot\) Volume \()\)
\(\mathrm{V}=\mathrm{FT} \dagger\)
Volume \(=\) Fill rate \(\bullet\) Time \((\) Volume \(=\) Volume/Time \(\cdot\) Time \()\)
```


Trap!

Textbooks use a wide variety of variables for predefined equations. Often the same variable is used to represent different items, e.g., 'P' can represent Percent, Price, Perimeter,
Principal, etc.; ' R ' can represent various rates, like speed, work, or percent.

Equation BrainAids

Most variables on this page were chosen and arranged to make it easier to remember the equations.
See the individual BrainAids on the referenced pages.

Tip

As you encounter other problem types, add them to this page, or insert an additional sheet of paper to record them.

Q $=\mathbf{P K}$ (kyu-pik) Problems
 Q: Quantity
 P: Percent
 K: Kwantity (made-up word)

P has no units, so Q \& K have the same units.
Alternate equations
$\mathrm{P}=\mathrm{Q} / \mathrm{K} ; \mathrm{K}=\mathrm{Q} / \mathrm{P}$

Interest Problems

$\mathrm{I}=\mathrm{RP}$ (p.72)
Interest $=$ Rate of return \bullet Principal $(\$$ Income $=$ Percent $\bullet \$$ Invested $)$

Mixture Problems
$\mathrm{V}=\mathrm{AT}$ (p.74)
Volume $=$ Amount \cdot Total
$\left(\right.$ Volume $_{\text {part }}=$ Percent \bullet Volume $\left._{\text {Total }}\right)$

$\mathrm{Q}=\mathrm{K}_{1} \mathrm{~K}_{2}$ (kyu-kik) Problems

Q: Quantity
K_{1} : Kwantity 1
K_{2} : Kwantity 2
If K_{1}, K_{2} use same units, $Q=$ units 2
If K_{1}, K_{2} use different units, $\mathrm{Q}=$ unit $_{1} \cdot$ unit $_{2}$

> Alternate equations
> $\mathrm{K}_{1}=\mathrm{Q} / \mathrm{K}_{2} ; \mathrm{K}_{2}=\mathrm{Q} / \mathrm{K}_{1}$

Area of Rectangle
A=WL (p.63)
$($ Area $=$ Width \cdot Length $)$
Electrical Power
$\mathrm{E}=\mathrm{KH} \dagger$
(Energy = Kilowatts \cdot Hours)

Other Types

Freeform Problems
1EqUnk/2EqUnk (p.61)

Markup Problems

$\mathrm{N}=\mathrm{O}+\mathrm{MO}$ (p.68)

$$
\text { New }=\text { Old }+ \text { Markup } \% \cdot \text { Old }
$$

Discount Problems

$\mathrm{N}=\mathrm{O}-\mathrm{DO}$ (p.69)
New $=$ Old - Discount $\%$ • Old

Percent-Change Problems

$\mathrm{P}=(\mathrm{N}-\mathrm{O}) / \mathrm{O}(\mathrm{p} .70)$
Percent-change $=($ New - Old $) /$ Old
\dagger Problem types without page numbers are listed here for your use, but no examples follow.

Word Problem Analysis

To be solvable, a word problem must either be a 1EqUnk (p.25) or provide enough information for you to reduce more complex equations to 1 Eq Unks.

Extracting Gold

Imagine a muddy stream (word problem) with a dense jumble of rocks (words) containing traces of gold (1EqUnks).

Some gold is on the surface of the rocks and easily extracted.

Other gold is embedded in the rocks and requires special extraction tools.

In each type of equation on this page, the gold 1EqUnk is shaded.

1EqUnk

$\mathrm{x}+2=6$
One Equation with One Unknown contains loose gold, which requires no special tools to extract.

2Eq6Unk

$$
\mathrm{Q}_{1}=\mathrm{R}_{1} \mathrm{~K}_{1} \quad \mathrm{Q}_{2}=\mathrm{R}_{2} \mathrm{~K}_{2}
$$

Two Equations with Six Unknowns have deeply embedded gold that requires one of the following toolkits to extract.

Toolkit 1 4 values $\begin{aligned} & \mathrm{R}_{1}=2, \mathrm{~K}_{1}=6 \\ & \mathrm{R}_{2}=3, \mathrm{~K}_{2}=4 \end{aligned}$	Toolkit 2 3 values 1 equality $\begin{gathered} \mathrm{R}_{1}=2, \mathrm{R}_{2}=3, \mathrm{~K}_{2}=4 \\ \mathrm{Q}_{1}=\mathrm{Q}_{2} \end{gathered}$	Toolkit 3 2 values 1 equality 1 substitution $\mathrm{R}_{1}=2, \mathrm{R}_{2}=3$
$\begin{aligned} & \mathrm{Q}_{1}=\mathrm{R}_{1} \mathrm{~K}_{1} \\ & \mathrm{Q}_{1}=2 \cdot 6 \end{aligned}$		$\begin{gathered} \mathrm{Q}_{1}=\mathrm{Q}_{2} \\ \mathrm{~K}_{1}=\mathrm{K}_{2}+2 \end{gathered}$
$\mathrm{Q}_{1}=12$	$\mathrm{R}_{1} \mathrm{~K}_{1}=\mathrm{R}_{2} \mathrm{~K}_{2}$	$\mathrm{Q}_{1}=\mathrm{Q}_{2}$
$\mathrm{Q}_{2}=\mathrm{R}_{2} \mathrm{~K}_{2}$	$2 \mathrm{~K}_{1}=3 \cdot 4$	$\mathrm{R}_{1} \mathrm{~K}_{1}=\mathrm{R}_{2} \mathrm{~K}_{2}$
$\mathrm{Q}_{2}=3 \cdot 4$ $\mathrm{Q}_{2}=12$	$\underline{2} \mathrm{~K}_{1}=\frac{12}{2}$	$2 \mathrm{~K}_{1}=3 \mathrm{~K}_{2}$
		$2\left(\mathrm{~K}_{2}+2\right)=3 \mathrm{~K}_{2}$
	$\mathrm{K}_{1}=6$	$2 \mathrm{~K}_{2}+4=3 \mathrm{~K}_{2}$
FYI 1 equality +2 substitutions or 2 equalities +1 substitution may produce quadratic equations.		$4=\frac{-2 \mathrm{~K}_{2}}{\mathrm{~K}_{2}}$
		$\mathrm{K}_{1}=\mathrm{K}_{2}+2$
		$\mathrm{K}_{1}=4+2$
		$\mathrm{K}_{1}=6$

Unit Analysis

Unit Analysis can help you decide how to set up an equation to get the desired result. It ensures that your final answer will have the appropriate units before you spend time calculating.

Consider the following, almost identical problems. You probably know that division is involved, but the dilemma is: Which way to divide? Unit analysis makes it much easier to decide.

If 50 books cost $\$ 25$, how much does one book cost?			If 50 books cost $\$ 25$, how many can you buy for $\mathbf{\$ 1}$?	
Unit Analysis:	st/book		Unit Analysis:	books/cost
Divide:	\$25 cost / 50 books	$\$ 25$	Divide:	50 books / \$ 25 cost
Solution:	\$0.50 cost / 1 book		Solution:	2 books / \$1 cost

Tip
In general, the item you are seeking goes on top (numerator) and the per-unit item goes on the bottom (denominator).

Proportional Ratios

In the preceding problems, dividing with the given numbers (50 books and $\$ 25$) produced correct answers because both problems asked for a quantity for one; i.e., cost for one book, books for one dollar. Since the result of a division is a one in the denominator, straight division worked.
When a problem asks for more than one in the denominator, use Proportional Ratios.

Freeform Word Problems

Instead of predefined formulas, some word problems require you to build equations directly from the text in the problem. This is when the English-to-Math Chart (p.57) helps the most.

Freeform problems often involve 1EqUnk (p.25) or 2EqUnk (p.35) equations.

1EqUnk Problems

Joe bought 4 cans of nuts and gave half away as gifts. How many does he have left? Identify: Freeform 1EqUnk problem Draw:
Equate: Cans left $=$ cans bought $-1 / 2$ cans bought.

Assign:	C	$=$	4	$-1 / 2(4)$	(all units in cans)
Solve:	C	$=$	4	-	2
	C	$=$		2 cans	

Your turn: Meg picked 6 plums, gave 2 away, and picked 4 more. How many does she have now?
I
D

E

A
S

2EqUnk Problems

Tom is $\mathbf{3}$ years younger than Sue. Together they are 13 years old. How old is each? Identify: Freeform 2EqUnk problem
Draw:
Equate: $\underline{T o m}_{y r s}=\underline{S u e}_{y r s}-3_{\mathrm{yrs}} \quad$ Tom $_{y \mathrm{rrs}}+\underline{S u e}_{\mathrm{yrs}}=13_{\mathrm{yrs}} \quad(\mathrm{yrs}=$ years $)$
Assign: $\quad \mathrm{T}=\mathrm{S}-3-\mathrm{T}+\mathrm{S}=13$ (all units in yrs)
Solve:

$$
\begin{aligned}
& 13 \\
& 13
\end{aligned}
$$

$$
\begin{aligned}
3 & =13 \\
\underline{+3} & \underline{+3} \\
& =\frac{16}{2} \\
& =8 \mathrm{yrs}
\end{aligned}
$$

Check
$T+S=13$
$5+8=13$

Your turn: Bob has 2 more pens than Jan. Together they have 10. How many pens does each have?
I
D
E
A
S

Geometric Word Problems

Perimeter Problems

Perimeter [pur-IH-meh-tur] is a measure of the distance around an object.
Peri is Greek for "around." Meter is Greek for "measure."

Rectangle

The perimeter of a rectangle is twice its length plus twice its width.
$\mathbf{P}_{\mathrm{R}}=\mathbf{2 L}+\mathbf{2 W}$
$\mathrm{P}_{\mathrm{R}}=$ Perimeter of rectangle
$\mathrm{L}=$ Length (long side)
W = Width (short side)

\square

Alternate Equation: Factoring out the 2 yields: $\mathrm{P}_{\mathrm{R}}=2(\mathrm{~L}+\mathrm{W})$
ERIMETER
BrainAid Imagine walking a path around the
Square
The perimeter of a square is four times the length of one side.
$\mathrm{P}_{\mathrm{S}}=4 \mathrm{~S}$
$\mathrm{P}_{\mathrm{S}}=$ Perimeter of square
S = Length of one side

Circle

The perimeter, aka circumference [sur-CUM-frenss], of a circle is its Diameter times Pi [pii].
$\mathbf{C}=\mathbf{d} \boldsymbol{\pi}$
$\mathrm{C}=$ Circumference
$\mathrm{d}=$ diameter (a line through the center)
$\pi=\mathrm{pi}=\sim 3.14$ or $\sim 22 / 7$

* The word pi is Greek for periphery and came from measuring circles.

How much fencing is needed to enclose a 100 ft by 50 ft field? ($\mathrm{ft}=$ foot or feet)
Identify: Rectangle Perimeter problem
Draw:
Equate: $\underline{\text { Perimeter }}_{\text {rectangle }}=2 \cdot \underline{\text { length }}+2 \cdot \underline{\text { width }}$ (all units in feet)
$\begin{array}{lllc}\text { Essign: } & \mathrm{P}_{\mathrm{R}} & = & 2 \mathrm{~L} \\ \text { A } & +\quad 2 \mathrm{~W} \\ \text { Solve: } & \mathrm{P}_{\mathrm{R}} & = & 2(100)+2(50) \\ & \mathrm{P}_{\mathrm{R}} & = & 300 \mathrm{ft}\end{array}$

Your turn: What is the distance around a village square that's 30 m on each side? ($\mathrm{m}=$ meters)

D

E

A

S

Area Problems

Area [AIR-ee-uh] is a measure of the space on the surface of an object.
Area is Latin for "level ground" or "open space."

Rectangle

The area of a rectangle is its width times its length.
$\mathbf{A}_{\mathbf{R}}=\mathbf{W L}$
$\mathrm{A}_{\mathrm{R}}=$ Area of rectangle
W = Width (short side)
$\mathrm{L}=$ Length (long side)

Square

The area of a square is the length of one side squared.
$\mathbf{A}_{\mathrm{S}}=\mathbf{S}^{\mathbf{2}}$
$\mathrm{A}_{\mathrm{S}}=$ Area of square
$S=$ Length of one side

Circle

The area of a circle is pi times its radius squared.
$\mathrm{A}_{\mathrm{C}}=\boldsymbol{\pi} \mathrm{r}^{2}$
$\mathrm{A}_{\mathrm{C}}=$ Area of circle
$r=$ radius (a line from center to edge $=1 / 2$ diameter)
$\pi=\mathrm{pi}=\sim 3.14$ or $\sim 22 / 7$

How many square feet is a circular lawn whose radius is $\mathbf{1 0} \mathbf{f t} \boldsymbol{(f t}=$ foot or feet, $\mathrm{ft}^{2}=$ square ft$)$ Identify: Circle Area problem

Draw:
Equate: Area $_{\text {circle }}=$ Assign: $\quad \mathrm{A}_{\mathrm{C}}=$ Solve: $\quad A_{C}=3.14(10 \mathrm{ft})^{2}$ $A_{C}=3.14\left(100 \mathrm{ft}^{2}\right)$ $A_{C}=314 \mathrm{ft}^{2}$

Seed $157 \mathrm{ft}^{2}$

How many bags of seed are needed for this lawn if one bag covers $157 \mathrm{ft}^{\mathbf{2}}$?
Identify: Freeform Division problem Draw:
Equate: Bags $=$ Area $_{\mathrm{ft}}{ }^{2} /$ Coverage $_{\mathrm{ft}}{ }^{2}$
Assign: $B=A \quad / \quad C$
Solve: $\quad B=314 / 157$

Your turn: How many square yards is a tarp that measures $50 \mathrm{yd} \times 30 \mathrm{yd}$? $\left(\mathrm{yd}=\mathrm{yard} / \mathrm{s}, \mathrm{yd}{ }^{2}=\mathrm{square} \mathrm{yd}\right)$

Travel Word Problems

Distance/Rate/Time: DRT

The Distance traveled equals the
Rate of travel times the Time traveled.
$\mathbf{D}=\mathbf{R T}$
$\mathrm{D}=$ Distance traveled
$\mathrm{R}=$ Rate of travel (average speed)
$\mathrm{T}=$ Time traveled
Travel Rate: $\mathrm{R}=\mathrm{D} / \mathrm{T}$
Travel Time: $T=D / R$

Alternate Equations
$\frac{\mathrm{D}}{\mathrm{T}}=\frac{\mathrm{RA}}{\mathrm{T}}$
$\frac{\mathrm{D}}{\mathrm{T}}=\mathrm{R}$
$\frac{\mathrm{D}}{\mathrm{R}}=\frac{\mathrm{RT}}{\mathrm{R}}$
$\frac{\mathrm{D}}{\mathrm{R}}=\mathrm{T}$

BrainAid
Pronounce DRT as "dirt."
Imagine a car traveling on a dirt road.

What distance is traveled by a biker averaging $\mathbf{1 0} \mathbf{~ m p h}$ for $\mathbf{2}$ hours? ($\mathrm{mph}=$ miles per hour) Identify: Travel Distance problem

Draw:
Equate: $\underline{\text { Distance }}_{\mathrm{mi}}=$ Rate $_{\mathrm{mph}} \bullet$ Time $_{\mathrm{hr}}(\mathrm{mi}=\mathrm{mile} / \mathrm{s}, \mathrm{hr}=\mathrm{hour} / \mathrm{s})$
Assign: D = RT
Solve: $\quad \mathrm{D}=10 \mathrm{miles} / \mathrm{h}$ бur $\cdot 2 \mathrm{~h}$ фurs $=20 \mathrm{miles}$

2 hrs ? miles

A biker who rides $\mathbf{6 0}$ miles in $\mathbf{4}$ hours pedals how fast on average?
Identify: Travel Rate problem
Draw:
Equate: Rate $_{\mathrm{mph}}=$ Distance $_{\mathrm{mi}} /$ Time $_{\mathrm{hr}}$
Assign: $\mathrm{R}=\mathrm{D} / \mathrm{T}$
Solve: $\mathrm{R}=60$ miles $/ 4$ hours $=15 \mathrm{mph}$

How long does a biker take to ride 12 miles at $\mathbf{3} \mathbf{~ m p h}$?
Identify: Travel Time problem
Draw:
Equate: $\underline{\text { Time }}_{\mathrm{hr}}=\underline{\text { Distance }}_{\mathrm{mi}} / \underline{\text { Rate }}_{\mathrm{mph}}$
Assign: $\mathrm{T}=\mathrm{D} / \mathrm{R}$
Solve: $\mathrm{T}=12$ mites $/ 3 \mathrm{miles} /$ hours $=4$ hours

Tip

Instead of memorizing the Alternate Equations, remember $\mathrm{D}=\mathrm{RT}$, and isolate the unknown variable as needed with Shoot-the-Chute (p.33).

R and T always go together.

Your turn: How far does a biker ride when averaging 15 mph for 5 hours?
I

D

E

A

S

Double DRT: Round Trip Average Rate

The average Rate of travel for a round trip (or several shorter trips) is the total Distance divided by the total Time. $\mathbf{R}_{\text {avg }}=\mathbf{D}_{\text {total }} / \mathbf{T}_{\text {total }}$
What is the average rate of a car that travels 60 miles outbound @ 60 mph , then returns 60 miles
inbound @ $30 \mathbf{m p h}$? ($\mathrm{mi}=$ mile $/ \mathrm{s}$; mph = miles per hour, $\mathrm{hr}=$ hour $/ \mathrm{s}$)
INCORRECT
Identify: Average $=$ Sum of Items $/$ Total Items

Draw:
Equate: $\underline{\text { Rate }}_{\text {avg }}=\left(\right.$ Rate $\left._{\text {out }}+\underline{\text { Rate }}_{\text {in }}\right) / 2$

Assign: $\mathrm{R}_{\mathrm{A}}=\left(\mathrm{R}_{\mathrm{O}}+\mathrm{R}_{\mathrm{I}}\right) / 2$
Solve: $\mathrm{R}_{\mathrm{A}}=(60 \mathrm{mph}+30 \mathrm{mph}) / 2=90 \mathrm{mph} / 2=45 \mathrm{mph}$

CORRECT

Identify: Travel Time problem (two trips)
Draw:
Equate: $\underline{\text { Time }}_{\text {out }}=\underline{\text { Distance }}_{\text {out }} / \underline{\text { Rate }}_{\text {out }} \quad \underline{\text { Time }}_{i n}=\underline{\text { Distance }}_{\text {in }} / \underline{\text { Rate }}_{\text {in }}$
Assign: $\mathrm{T}_{\mathrm{O}}=\mathrm{D}_{\mathrm{O}} / \mathrm{R}_{\mathrm{O}} \quad \mathrm{T}_{\mathrm{I}}=\mathrm{D}_{\mathrm{I}} / \mathrm{R}_{\mathrm{I}}$

Identify: Round Trip Average Rate
Draw:
Equate: Rate $_{\text {avg }}=$ Distance $_{\text {total }} /$ Time $_{\text {total }}$
Rate $_{\text {avg }}=\left(\right.$ Distance $\left._{\text {out }}+\underline{\text { Distance }}_{i n}\right) /\left(\right.$ Time $\left._{\text {out }}+\underline{\text { Time }}_{\text {in }}\right)$
Assign: $\mathrm{R}_{\mathrm{A}}=\left(\mathrm{D}_{0}+\mathrm{D}_{\mathrm{I}}\right) /\left(\mathrm{T}_{0}+\mathrm{T}_{\mathrm{I}}\right)$
Solve: $\mathrm{R}_{\mathrm{A}}=(60 \mathrm{mi}+60 \mathrm{mi}) /(1 \mathrm{hr}+2 \mathrm{hr})=120 \mathrm{mi} / 3 \mathrm{hr}=40 \mathrm{mph}$

Trap!

45 mph , the midpoint between 60 mph and 30 mph , would be correct if the car traveled the same amount of time in both directions. But the car necessarily took longer to cover the inbound 60 miles at the slower 30 mph , which pulled the average down to 40 mph .

Your turn: What is the average rate of a car than travels 30 miles outbound @ 30 mph , then returns 30 miles inbound @ 10 mph ?

E

A

Double DRT: Catch Up

Bus\#1 leaves the depot and averages 50 mph . Bus\#2 leaves 1 hour later averaging 75 mph .
How long will it take Bus\#2 to catch up to Bus\#1?
At what distance from the depot?
Identify: Travel Catch Up problem (Distance equal) Draw:

Equate: $\underline{\text { Distance }}_{1}=\underline{\text { Distance }}_{2} \quad \underline{\text { Time }}_{1}=\underline{\text { Time }}_{2}+1 \mathrm{hr} \quad \underline{\text { Rate }}_{1}=50 \mathrm{mph} \quad \underline{\text { Rate }}_{2}=75 \mathrm{mph}$
Assign: $\quad \mathrm{D}_{1}=\mathrm{D}_{2}$
$\mathrm{T}_{1}=\mathrm{T}_{2}+1 \mathrm{hr}$
$\mathrm{R}_{1}=50 \mathrm{mph}$
$\mathrm{R}_{2}=75 \mathrm{mph}$
$\mathrm{R}_{1} \mathrm{~T}_{1}=\mathrm{R}_{2} \mathrm{~T}_{2}$ $\mathrm{R}_{1}\left(\mathrm{~T}_{2}+1\right)=\mathrm{R}_{2} \mathrm{~T}_{2}$
Solve: $50 \mathrm{mph}\left(\mathrm{T}_{2}+1 \mathrm{hr}\right)=75 \mathrm{mph}\left(\mathrm{T}_{2}\right)$
$\mathrm{D}_{2}=\mathrm{R}_{2} \mathrm{~T}_{2}$
$50 \mathrm{~T}_{2} \mathrm{mi}+50 \mathrm{mi}=75 \mathrm{~T}_{2} \mathrm{mi}$ $-50 \mathrm{~T}_{2} \underline{\underline{\mathrm{mi}}}=-\underline{-50}_{2} \underline{\underline{\mathrm{mi}}}$

50 дпII $=25 \mathrm{~T}_{2} \underline{\text { mi }}$ 25mph 25 mph $2 \mathrm{hr}=\mathrm{T}_{2}$
$\mathrm{D}_{2}=75 \mathrm{mph} \cdot 2 \mathrm{hr}$
$\mathrm{D}_{2}=150 \mathrm{mi}$

Solution

Bus2 catches up to Bus1 in 2 hours 150 miles from the depot.

Your turn: Ann leaves school and walks 2 mph . Bob leaves 1 hour later and walks 4 mph . How long will it take him to catch up with Ann and at what distance from school?

I

D

E

A

S

Double DRT: Meet in Between

Eve and Jim are 10 miles apart and start walking towards each other. Eve walks 2 mph . Jim walks 3 mph . How long does it take, and how far has each walked when they meet?
Identify: Travel Meet in Between (Time equal)
Draw:

Time meet? Distance each?

Equate: Time $_{E v e}=$ Time $_{\text {Jim }}=$ Time Distance $_{E_{\text {eve }}}+$ Distance $_{\text {Jim }}=10 \mathrm{mi}$
Assign: $\mathrm{T}_{\mathrm{E}}=\mathrm{T}_{\mathrm{J}}=\mathrm{T} \quad \mathrm{D}_{\mathrm{E}}+\mathrm{D}_{\mathrm{J}}=10 \mathrm{mi}$

$$
\underline{\text { Rate }}_{\mathrm{Eve}}=2 \mathrm{mph} \quad \underline{\text { Rate }}_{\mathrm{Jim}}=3 \mathrm{mph}
$$

Solve: $10 \mathrm{mi}=(2+3) \mathrm{mph}(\mathrm{T})$
$\mathrm{D}_{\mathrm{E}}=\mathrm{R}_{\mathrm{E}} \mathrm{T}$
$\mathrm{D}_{\mathrm{J}}=\mathrm{R}_{\mathrm{J}} \mathrm{T}$
$\underline{10 \mathrm{mII}}=\underline{5 \mathrm{mph}}(\mathrm{T})$
5mph $=5 \mathrm{mph}$
$\mathrm{D}_{\mathrm{E}}=2 \mathrm{mph} \cdot 2 \mathrm{hr}$
$\mathrm{D}_{\mathrm{I}}=3 \mathrm{mph} \cdot 2 \mathrm{hr}$
$\mathrm{D}_{\mathrm{E}}=4 \mathrm{mi}$
$\mathrm{D}_{\mathrm{J}}=6 \mathrm{mi}$
$\mathrm{R}_{\mathrm{J}} \quad=3 \mathrm{mph}$

Solution

They meet in 2 hours. Ann walked 4 miles; Bob walked 6 miles.

Double DRT Variations

Many variations of distance, rate, and time and the relationships between them are possible, e.g., travelers may leave at same or different times, total distance may be provided but not individual distances, rates may be given in terms of each other as in "twice as fast." The variations seem endless but are always based on $\mathrm{D}=\mathrm{RT}$.

Tip

See Word Problem
Analysis (p.58) for the minimum elements needed to solve 2Eq6Unk problems like Double DRTs.

Mileage: DMV

Distance traveled equals Mileage rate times fuel Volume.
D = MV
$\mathrm{D}=$ Distance in miles
$\mathrm{M}=$ Mileage in miles per gallon (mpg)
$\mathrm{V}=$ Volume of fuel in gallons (gal)

Alternate
Equations
$\mathrm{M}=\mathrm{D} / \mathrm{V}$
$\mathrm{V}=\mathrm{D} / \mathrm{M}$

A car travels 500 miles on a 20-gallon tank of gas. What is its mpg?
Identify: Travel Mileage

Draw:

BrainAid
DMV stands for the Dept. of Motor Vehicles.

Financial Word Problems

Besides financial items, these equations will work for almost any type of percent increase, decrease, or change problems. Tip: Review percents, fractions, and decimals in Max Learning's Fraction Fun.

Price Markup on Cost: NO+MO

Merchants mark up (raise) the price of a product so they can make a profit on each sale.

The New price equals the Old price plus the Markup\% times the Old price.
$\mathbf{N}=\mathbf{O}+\mathbf{M O}$
$\mathrm{N}=$ New price (aka Retail or List price)
$\mathrm{O}=$ Old price (aka Wholesale or Original price)
M = Markup Percent

BrainAid

Imagine a positive (+) merchant named $\mathrm{NO}+\mathrm{MO}^{[n o h}-$ moh] who loves to Markup prices.

Alternate Equation: Factoring out the O yields: $\mathrm{N}=\mathrm{O}(1+\mathrm{M})$.
Explanation: $(1+$ M $)$ is the multiplier that yields the New price, e.g., if Markup $=20 \%$, the New price is 120% of the Old. The math: $(1+20 \%)=(100 \%+20 \%)=120 \%$

What is the price of a $\mathbf{\$ 1 0}$ coat after a $\mathbf{2 0 \%}$ markup? Identify: Price Markup problem
Draw:
$\underline{\text { Equate: }} \underline{\text { New price }}=\underline{\text { Old price }}+\underline{\text { Markup\% }}$ - Old price
Assign: $\mathrm{N}=\mathrm{O}+\mathrm{MO}$

Solve: $\quad \mathrm{N}=\$ 10+20 \%(\$ 10)=\$ 10+\$ 2=\$ 12$

Markup on Sell Price

Some merchants prefer to make markups based on the selling price, which results in a greater new price. They use this equation instead:

$$
\mathrm{N}=\mathrm{O}+\mathrm{MN}
$$

Your turn: What is the price of a $\$ 20$ coat after a 50% markup?
I

D

E

A

S

Tax "Markup": NO+TO

Adding sales tax to an item is like marking it up by the tax percentage.
$\mathbf{N}=\mathbf{O}+\mathbf{T O}$
$\mathrm{T}=$ Tax percentage (replaces M)

Imagine a $\mathrm{NO}+\underline{\mathrm{MO}}$ has a cousin named $\mathrm{NO}+\underline{\mathrm{T}} \mathrm{O}$ [noh-toh].

What is the price of a \$12 coat with $\mathbf{5 \%}$ sales tax? Identify: Tax Markup problem
Draw:
$\underline{E q u a t e}: \underline{\text { New price }}=\underline{\text { Old price }}+\underline{\text { Tax } \%}$ • Old price
Assign: $\mathrm{N}=\mathrm{O}+\mathrm{TO}$
Solve: $\mathrm{N}=\$ 12+5 \%(\$ 12)=\$ 12+\$ 0.60=\$ 12.60$

Price Discount: NO-DO

Merchants discount (lower) the price of a product to increase the number of items sold.

The New price equals the Old price minus the Discount\% times the Old price.
$\mathbf{N}=\mathbf{O}-\mathbf{D O}$
$\mathrm{N}=$ New price (aka Discounted or Sale price)
$\mathrm{O}=$ Old price (aka Retail, List, or Original price)
D = Discount Percent

Alternate Equation: Factoring out the O yields: $\mathrm{N}=\mathrm{O}(1-\mathrm{D})$.
Explanation: $(1-\mathrm{D})$ is the multiplier that yields the New price, e.g., if Discount $=30 \%$, the New price is 70% of the Old.
The math: $(1-30 \%)=(100 \%-30 \%)=70 \%$
What is the price of a \$10 T-shirt after a $\mathbf{2 5 \%}$ discount?
Identify: Price Discount problem
Draw:
Equate: New price $=\underline{\text { Old price }}-\underline{\text { Discount } \%}$ • Old price Assign: $\mathrm{N}=\mathrm{O}$ - DO

Shortcut Solution

If 25% is deducted, 75% remains.

$$
75 \%(\$ 10)=\$ 7.50
$$

Solve: $\quad \mathrm{N}=\$ 10-25 \%(\$ 10)=\$ 10-\$ 2.50=\$ 7.50$
Your turn: What is the price of a $\$ 20$ T-shirt after a 50% discount?

I

D

E

A

S

Your turn: What is the price of the discounted T-shirt (from above) with 10% sales tax?
I

D

E

A

S

Percent-Change: PN-O/O

Merchants sometimes need to calculate the percent change between two prices to determine the markup or discount percent.

The Percent change equals the difference between the New price and the Old price divided by the Old price.
$\mathbf{P}=\frac{\mathbf{N}-\mathbf{O}}{\mathrm{O}}$
$\mathrm{P}=$ Percent change
$\mathrm{N}=$ New price (aka Current price)
$\mathrm{O}=$ Old price (aka Original or Base price)

BrainAid

Imagine PiNOcchiO, the puppet who became a boy, has the nickname PNOO [pi-noh]. He calculates the percent change in his nose size when he tells a lie.

$$
\begin{gathered}
\mathbf{P i}=\mathbf{N - \mathbf { O }} \\
\text { cchiO }
\end{gathered}
$$

We could move the minus sign to the left side to make $(-\mathrm{N}+\mathrm{O}) / \mathrm{O}=\mathrm{D}$, but then you'd have to learn two equations. It's easier to use the same equation and remember that a negative result means a percent decrease or discount.

What is the percent markup on a $\mathbf{\$ 1 0}$ dress that now sells for $\mathbf{\$ 1 5 ?}$ Identify: Percent Change problem
Draw:
$\underline{\text { Equate: }} \underline{\text { Percent-change }}=(\underline{\text { New price }}-\underline{\text { Old price }}) / \underline{\text { Old price }}$
Assign: $\mathrm{P}=(\mathrm{N}-\mathrm{O}) / \mathrm{O}$
Solve: $\quad P=(\$ 15-\$ 10) / \$ 10=5 / 10=50 \%$

What is the percent discount on a $\mathbf{\$ 1 5}$ dress that's on sale for $\mathbf{\$ 1 0}$? Identify: Percent Change problem
Draw:
$\underline{\text { Equate: }} \underline{\text { Percent-change }}=($ New price $-\underline{\text { Old price }}) / \underline{\text { Old price }}$
Assign: $\mathrm{P}=(\mathrm{N}-\mathrm{O}) / \mathrm{O}$
Solve: $\quad P=(\$ 10-\$ 15) / \$ 15=-5 / 15=-33 \%$

The minus indicates a decrease. Because a discount is also a decrease, we'd say the percent discount is 33%, not -33%.

Percent Paradox

A larger Old price results in a smaller percent change.
Although the difference between the New and Old prices was $\$ 5$ for both markup and discount, the percent changes were not the same, because they were based on different
Old prices, first $\$ 10$ (50\% change) then \$15 (-33% change).

Your turn: What is the percent discount on a $\$ 20$ dress that's on sale for $\$ 15$?

Cost: CPK

Merchants must often calculate the cost of selling or buying a quantity of identical items.

The Cost equals the Price per item times the Kwantity of items.
$\mathbf{C}=\mathbf{P K}$
C $=$ Cost of all items
$\mathrm{P}=$ Price (aka Cost) for one item
$\mathrm{K}=$ Kwantity (made-up word) of items purchased

BrainAid
Imagine a merchant named CPK [see-pak] seeing a package of items he sold.

What is the total cost of $\mathbf{5}$ hammers sold for $\mathbf{\$ 1 0}$ each?
Identify: Cost problem
Draw:
Equate: Cost of hammers $=$ price per hammer \bullet kwantity of hammers
Assign: $\mathrm{C}=\mathrm{PK}$

Solve: $\quad \mathrm{C}=\$ 10 /$ hammer (5 hammers) $=\$ 50$
If a box contained twenty $\mathbf{\$ 1 0}$ hammers, how much would 3 boxes cost?
Identify: Cost problem (1 of 2)
Draw:
Equate: $\underline{\text { Cost of box }}=$ price per hammer \bullet kwantity of hammers per box
Assign: $\mathrm{C}=\mathrm{PK}$

20 hammers
Solve: $\quad C=\$ 10 /$ hammer (20 hammers/box) $=\$ 200 / b o x$
Identify: Cost problem (2 of 2)
Draw:
Equate: Cost of 3 boxes $=$ price per box \bullet kwantity of boxes Assign: $\mathrm{C}=\mathrm{PK}$

Solve: $\quad C=\$ 200 / b 0 x(3$ boxes $)=\$ 600$

Your turn: What is the total cost of 4 toasters sold for $\$ 15$ each?
I

D

E

A

S

Also see Unit Analysis and Proportional Ratios (p.60) for alternative approaches to setting up and solving Cost and other problems.

Interest Earned: IRP

Interest earned on an investment equals the Rate (percent) of annual interest times the Principal invested.
$\mathbf{I}=\mathbf{R P}$
I = Interest earned (\$)
$\mathrm{R}=$ Rate of annual interest (percent)
$\mathrm{P}=$ Principal invested (\$)

BrainAid

Imagine Mr. IRP who proudly exclaims:
"I ReaP interest from my investments."

How much interest does Ron earn in one year on a $\$ 1000$ investment at 6% ? Identify: Interest Earned problem

Draw:				
Equate: Interest earned $=\underline{\text { interest rate }}$ • principal	$\mathbf{\$ 1 0 0 0}$	$\mathbf{6 \%}$		\$Interest
:---				
earned?				

The traditional equation is $\mathrm{I}=\mathrm{PR}$, but $\mathrm{I}=\mathrm{RP}$ fits the $\mathrm{Q}=\mathrm{PK}$ pattern (p.58).

Assign: $\mathrm{I}=6 \%$ • $\$ 1000$
Solve: $I=6 \% \cdot \$ 1000=6 / 100 \bullet \$ 1000=\$ 60$
$\mathbf{I}=\mathbf{R P T}$
$\mathrm{T}=$ Time period (in years or fraction of a year)
The traditional equation is I=PRT.
$\mathrm{I}=\mathrm{RP}$ is derived from $\mathrm{I}=\mathrm{RPT}$ where $\mathrm{T}=1$. But any period can be used, e.g., $\mathrm{T}=2$ equals 2 years. $\mathrm{T}=1 / 12$ equals one month.
BrainAid: Mr. IRPT exclaims: "I reap interest RePeaTedly" over several periods.
$\mathrm{I}=$ RPT computes simple interest, which is calculated only on the originally invested Principal each period.
FYI: For compound interest, add the interest earned each period to the Principal, then compute the next period's interest on the new higher total. Compounding is a good thing for the investor since it increases the total interest earned.

Coins: TVC

The Total value of a group of the same-type coin is the Value of one coin times the number of those Coins.
$\mathrm{T}=\mathrm{VC}$
$\mathrm{T}=$ Total value
$\mathrm{V}=$ Value of one coin of that type
$\mathrm{C}=$ Coins of that type

BrainAid

Imagine TVC, the
Total Value Channel, having a special sale on valuable coins.

What is the total value of Ned's 30 nickels?

$\mathrm{T}=\$.05 /$ niekel $\cdot 30$ nickels $=\$ 1.50$
Coin problems usually combine the total values of several coin equations.

- The variable ' C ' changes for each coin type: $\mathrm{P}=$ Pennies, $\mathrm{N}=$ Nickels, $\mathrm{D}=$ Dimes, $\mathrm{Q}=\mathrm{Quarters}$.
- Total $_{\text {All coins }}=\$.01 \mathrm{P}+\$.05 \mathrm{~N}+\$.10 \mathrm{D}+\$.25 \mathrm{Q}$

Peg has a total of $\mathbf{7}$ dimes and quarters worth $\$ 1$. How many of each does she have? Identify: Coin problem
Draw:
7 coins: Dimes? Quarters?

Assign: $\mathrm{D}+\mathrm{Q}=7 \quad \$ 1.00=\$.10 \mathrm{D}+\$.25 \mathrm{Q}$
Solve:
$\mathrm{D} \quad \mathrm{Q} \begin{gathered}=-\mathrm{Q} \\ =7-\mathrm{Q} \\ \text { (substitute) }\end{gathered}$
$\$ 1.00=\$.10(7-\mathrm{Q})+\$.25 \mathrm{Q}$
$\$ 1.00=\$.70-\$.10 \mathrm{Q}+\$.25 \mathrm{Q}$
$\$ 1.00=\$.70+\$.15 \mathrm{Q}$
$\mathrm{D} \quad=7-2 \leftarrow \quad-\$.70 \quad-\$.70$
D

$\underline{-\$.70}$	
$\frac{\$.30}{\$.15}=$	$\underline{\$.15 Q}$ 2$=$$\$.15$ Q

Check
$\$ 1.00=\$.10 \mathrm{D}+\$.25 \mathrm{Q}$
$\$ 1.00=\$.10(5)+\$.25(2)$
$\$ 1.00=\$.50+\$.50$
$\$ 1.00=\$ 1.00 \mathrm{~V}$

Work Word Problems

Work/Rate/Time: WRT

The Work completed equals the Rate of work times the Time worked.
$\mathbf{W}=\mathbf{R T}$
$\mathrm{W}=$ Work completed (aka job, task)
$\mathrm{R}=$ Rate of work
$\mathrm{T}=$ Time worked

BrainAid

 Imagine WRT the Work Rate Timekeeper keeping track of how far workers have gone towards completing the work.Alternate Equations: $\mathrm{R}=\mathrm{W} / \mathrm{T}, \mathrm{T}=\mathrm{W} / \mathrm{R}$
How many tasks can Rob complete if he performs 1 task in $\mathbf{2}$ hours and works for 10 hours?
$\mathrm{W}=1$ task $/ 2$ hours $\cdot 10$ hours $=5$ tasks
Work problems usually combine the work rates of more than one worker.
Cal can paint 1 room in 2 hours. Zoe can paint 1 room in $\mathbf{3}$ hours. How long does it take them to paint 1 room together?
Identify: Work problem
Draw:
$\mathrm{rm}=\mathrm{room} / \mathrm{s}$

Assign: $\quad \mathrm{W}=\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{Z}}\right) \mathrm{T}$
Solve: $1 \mathrm{rm}=(1 \mathrm{rm} / 2 \mathrm{hr}+1 \mathrm{rm} / 3 \mathrm{hr}) \mathrm{T}$
hr = hour/s $\begin{aligned} 6[1 \mathrm{rm} & =(1 \mathrm{rm} / 2 \mathrm{hr}+1 \mathrm{rm} / 3 \mathrm{hr}) \mathrm{T}] \longleftarrow \text { Clear } \\ 6 \mathrm{rm} & =(3 \mathrm{rm} / \mathrm{hr}+2 \mathrm{rm} / \mathrm{hr}) \mathrm{T}\end{aligned}$ $\underline{6 \mathrm{r} \Pi}=\underline{(5 \mathrm{mathr})} \mathrm{T} \quad$ (p.32.) $5 \% \mathrm{~m} / \mathrm{hr} \quad 5 \mathrm{mr} / \mathrm{hr}$
$1 / 5 \mathrm{hr}=\mathrm{T}$

Your turn: Ona can assemble one bike in 1 hour. Mac can assemble one bike in 2 hours. How long does it take for them to assemble one bike together?
I
D

E

A

S

Mixture Word Problems

Volume/Amount/Total: VAT

The Volume of one component is an Amount (percent) of the Total mixture.
$\mathbf{V}=\mathbf{A T}$
$\mathrm{V}=$ Volume of one component
$\mathrm{A}=$ Amount (percent)
$\mathrm{T}=$ Total volume of mixture

BrainAid

 Imagine stirring a mixture in a large VAT.Alternate Equations: $\mathrm{A}=\mathrm{V} / \mathrm{T}, \mathrm{T}=\mathrm{V} / \mathrm{A}$
How many ounces (oz) of water are in a 100 oz beaker that's $\mathbf{2 5 \%}$ water?
$\mathrm{V}=25 \%(100 \mathrm{oz})=25 \mathrm{oz}$
Typical mixture problems involve changes to the volume of components.
Ethanol is $\mathbf{4 0 \%}$ of a 10 -pint mixture. Tim adds 2 more pints of ethanol. What is its new percent? Identify: Mixture problem
Draw:

$\underline{\text { Volume ethanol+2 }}=\underline{\text { Amount } \% \text { ethanol }+2}$ - Total volume +2
Assign: $\mathrm{V}_{\mathrm{E}}=\mathrm{A}_{\mathrm{E}} \mathrm{T} \quad \mathrm{V}_{\mathrm{E} 2}=\mathrm{A}_{\mathrm{E} 2} \mathrm{~T}_{2}$
Solve: $\quad \mathrm{V}_{\mathrm{E}}=40 \%(10 \mathrm{pt})=4 \mathrm{pt} \longrightarrow(4+2 \mathrm{pt})=\mathrm{A}_{\mathrm{E} 2}(10+2 \mathrm{pt})$

$$
\mathrm{pt}=\mathrm{pint} / \mathrm{s}
$$

$$
\begin{aligned}
& \frac{6 \not p t}{12 \not p t}=\frac{\mathrm{A}_{\mathrm{E} 2}(12 \not \mathrm{pt})}{12 p t} \\
& 50 \%
\end{aligned}=\mathrm{A}_{\mathrm{E} 2}
$$

Your turn: Methyl is 10% of a 100 -gallon mixture. Kai adds 20 more gallons of methyl. What is its new percent?

I
D

E

A

S

Conversion Word Problems

A word problem may require you to convert one unit of measure into another.

Conversions: NCO

The number of New units equals the
Conversion rate times the number of Old units.
$\mathrm{N}=\mathbf{C O}$
$\mathrm{N}=$ New units
$\mathrm{C}=$ Conversion rate
$\mathrm{O}=$ Old units
Alternate equations: $\mathrm{C}=\mathrm{N} / \mathrm{O} ; \mathrm{O}=\mathrm{N} / \mathrm{C}$

BrainAid

 Imagine NCO [nuu-coh] the magician making New COnversions.The variables for N and O will change depending on the units being converted.
Rae walked for 1.5 hours. How many minutes did she walk?
Identify: Conversion problem
Draw:
Equate: $\underline{\text { Minutes walked }}=\underline{60 \text { minutes per hour }} \bullet \underline{\text { hours walked }}$
Assign: $\mathrm{M}=60 \mathrm{~min} / \mathrm{hr} \cdot \mathrm{H}(\mathrm{min}=$ minute $/ \mathrm{s} ; \mathrm{hr}=$ hour $/ \mathrm{s})$

Nat bought a 96-inch piece of wood. How many feet is it?
Identify: Conversion problem
Draw:
Equate: $\underline{\text { Feet of wood }}=\underline{1 \text { foot per } 12 \text { inches } \bullet} \underline{\text { inches of wood }}$
Assign: $\mathrm{F}=1 \mathrm{ft} / 12 \mathrm{in} \cdot \mathrm{I}(\mathrm{ft}=$ foot/feet; in $=$ inch/es $)$
Solve: $F=1 \mathrm{ft} / 12 \dot{\gamma} \mathrm{i} \cdot 96 \dot{\mathrm{~K}} \mathrm{~K}=8 \mathrm{ft}$

Your turn: Eve has a 10 -foot tree in her yard. How many inches tall is it?
I

D

E

A

S

Conversion by Replacement/Ratio

Most conversions are usually part of a more complicated word problem and don't always merit the full IDEAS treatment. Below are two alternate conversion methods.

Conversion by Replacement

Replace the old unit with its equivalent in the new unit and multiply.
$\mathbf{3}$ hours $=\mathbf{?}$ minutes
Process: Replace "hours" with " 60 minutes" and multiply.
Solution: 3 hours $=3(60$ minutes $)=180$ minutes
24 inches $=$? feet
Process: Replace "inches" with " $1 / 12$ foot" and multiply.
Solution: 24 inches $=24(1 / 12$ foot $)=2$ feet
Why Replacement Works:
It's based on $\mathrm{N}=\mathrm{CO}$ being reversed to $\mathrm{OC}=\mathrm{N}$.
Old units - Conversion rate $=$ New units
3 hotrrs - 60 minutes/hotr $=180$ minutes
24 ineties - $1 / 12$ foot/inch $=2$ feet

Conversion by Ratio

Set the New/Old ratio to the Conversion-rate ratio.
Solve for the New unit. Tip: Use Shoot-the-Chute (p.33).
How many seconds (\mathbf{S}) are in $\mathbf{1 0}$ minutes?

Why Ratios Work:

They're based on $\mathrm{N}=\mathrm{CO}$ being altered to $\mathrm{N} / \mathrm{O}=\mathrm{C}$.
Inverse Ratios
In problems that place the unknown variable in the denominator of the ratio, make sure the units in the conversion-rate ratio match top to bottom. See Unit Analysis (p.60).

Your turn: $120 \mathrm{~min}=$? hr Tip: $1 \mathrm{~min}=1 / 60 \mathrm{hr}$

Your turn: 2 yds $=? \mathrm{ft}$

Your turn: How many feet (F) are in 5 yards?

Conversion Ladders

How many teaspoons in an ounce?
Procedure: Start at 3 tsp. Climb/multiply to 2 TBS.
Solution: $3 \cdot 2=6$
Why it works: $3 \mathrm{tsp} / \mathrm{TB} 5 \cdot 2 \mathrm{tB} / \mathrm{oz}=6 \mathrm{tsp} / \mathrm{oz}$

Your turn: How many ounces in a quart?
U.S. Linear Ladder

1760 yd	Mile	How many feet in a mile? $3 \cdot 1760=5280$
12 in	Foot	Your turn: How many inches in a yard?

Time

Ladder

sec-second/s
min-minute/s; hr-hour/s

Trap!

Some conversion charts list conversion equations like:
miles $\times 1.6=$ kilometers
This does not mean that 1.6 miles $=1$ kilometer.

It means $\mathrm{OC}=\mathrm{N}$ where
$\mathrm{O}=$ Old units $=$ miles $\mathrm{C}=$ Conversion rate $=1.6 \mathrm{~km} / \mathrm{mi}$
$\mathrm{N}=$ New units $=$ kilometers
In fact,
1 mile $=1.6$ kilometers .

Answer Key

One Equation, One Unknown

Page 25: 1EqUnk Added Term
Top Row: $\mathrm{x}=1, \mathrm{x}=3$; Bottom Row: $\mathrm{x}=4, \mathrm{x}=9$

Page 26: 1EqUnk Subtracted Term

Top Row: $\mathrm{x}=7, \mathrm{x}=9$; Bottom Row: $\mathrm{x}=14, \mathrm{x}=21$

Page 27: 1EqUnk Multiplied Variable

Top Row: $\mathrm{x}=3$, $\mathrm{x}=2$; Bottom Row: $\mathrm{x}=5, \mathrm{x}=4$
Page 28: 1EqUnk Divided Variable
Top Row: $\mathrm{x}=12, \mathrm{x}=3$; Bottom Row: $\mathrm{x}=8, \mathrm{x}=15$
Page 29: Multiple Operations: Clear As Mud $\mathrm{x}=5$; $\mathrm{x}=3$

Page 30: Multiple Terms: Family Reunion
Top Row: $7 \mathrm{x}-5, \mathrm{x}^{2}-2 \mathrm{x}+9$; Bottom Row: $-3 \mathrm{x}^{2}+5 \mathrm{x}+1,-4 \mathrm{x}^{2}-\mathrm{x}+3$

Page 31: Separated Terms: Take Sides / Distributed Terms: Fair to All
Separated: $2 \mathrm{x}=8$. Distributed: $-5 \mathrm{x}+10=25,5 \mathrm{x}-10=25, \mathrm{x}-2=25$
Page 32: Simplifying Coefficients: Clear Denominators / Reduce Coefficients
Clear: $5 \mathrm{x}+5=2, \mathrm{x}+3=4$. Reduce: $3 \mathrm{x}+1=4, \mathrm{x}+2=-3$
Page 33: Clearing Equated Fractions: Shoot-the-Chute $x=5 / 3 ; x=9 / 14 ; x=8 / 15$

Page 34: Combining Fractions: Spotlighting Left column: $7 \mathrm{x} / 10=3, \mathrm{x} / 6=8$.
Right column: $5 \mathrm{x} / 6=7, \mathrm{x} / 8=9$

Two Equations, Two Unknowns

$$
\begin{gathered}
y=\mathbf{3 x - 2} \\
b=-2 \\
m=3 / 1
\end{gathered}
$$

Page 38: Eliminate to Solve
Add: (3, 1). Subtract: (1, 2)

Page 39: Multiply Then Eliminate

Left: $10 x=8$ or $5 y=3$. Center: $3 x=-13$ or $3 y=14$. Right: $12 x=25$ or $12 y=7$
Page 40: 2EqUnk Substitution: Masquerade $(2,4)$

Linear Equations

Page 42: Slope-Intercept Form
$\mathrm{y}=2 \mathrm{x}+3, \mathrm{~m}=2, \mathrm{~b}=3$
Page 44: Calculating Slope: $\Delta \mathbf{y} / \Delta \mathbf{x}$
$\mathrm{m}=2, \mathrm{~m}=-2, \mathrm{~m}=2$

Page 46: Plotting LinEqs

See plots on this page.

Quadratic Equations

Page 49: QuadEq Traditional Techniques

Left column: $x^{2}+3 x, x(x+3), 2 x^{2}+6 x, 2 x(x+3)$
Center column: $x^{2}+5 x+6,(x+2)(x+3)$.
Right column: $x^{2}-9,(x+3)(x-3)$

Page 50: QuadEq Cat Techniques

Page 51: QuadEq Cat Traps \& Tips

List Ingredients	Prepare Food	Feed Cat
$\begin{aligned} & \frac{\mathbf{3 x ^ { 2 }}}{x \cdot 3 x}-\mathbf{8 x}+\frac{\mathbf{4}}{-1 \cdot-4} \\ & 3 x \cdot x \end{aligned}$		$\underbrace{3 x^{2}-8 x+4}_{\left(\begin{array}{l} \mathbf{3 x}-\mathbf{2})(x-2) \\ -2 x \\ -6 x \end{array}\right)}$

Page 52: Zero-Product Principle

Left: $\mathrm{x}=0$ and/or $\mathrm{x}=-3$. Center: $\mathrm{x}=3$ and/or $\mathrm{x}=-2$. Right: $\mathrm{x}=1 / 2$ and/or $\mathrm{x}=2$.

Page 53: Solving QuadEqs by Cat Factoring

Page 54: Solving QuadEqs with Quadratic Formula
$x=\frac{-3 \pm \sqrt{3^{2}-4(1)(-2)}}{2(1)}=\frac{-3 \pm \sqrt{17}}{2}$

Word Problems

Page 61: Freeform Word Problems

1EqUnk: Meg $_{\text {plums }}=6-2+4=8$.
$2 E q U n k: \operatorname{Bob}_{\text {pens }}=2+\operatorname{Jan}_{\text {pens }} ; \operatorname{Bob}_{\text {pens }}+\mathrm{Jan}_{\text {pens }}=10 . \operatorname{Bob}_{\text {pens }}=6 ; \operatorname{Jan}_{\text {pens }}=4$.

Page 62: Geometric Word Problems

Perimeter (p.62): Perimeter ${ }_{\text {square }}=4 \cdot$ Side $=4(30)=120 \mathrm{~m}$
Area (p.63): Area ${ }_{\text {rect }}=$ Length \bullet Width $=50 \bullet 30=150 \mathrm{yd}^{2}$

Page 64: Travel Problems

DRT (p.64): Distance $=15$ miles $/$ hour $\bullet 5$ hours $=75$ miles
Double DRT: Round Trip Average Rate (p.65): The average rate for the round trip was 15 mph .

$$
\mathrm{T}_{\text {out }}=\mathrm{D}_{\mathrm{O}} / \mathrm{R}_{\mathrm{O}}=30 \mathrm{mi} / 30 \mathrm{mph}=1 \mathrm{hr} ; \mathrm{T}_{\text {in }}=\mathrm{D}_{\mathrm{I}} / \mathrm{R}_{\mathrm{I}}=30 \mathrm{mi} / 10 \mathrm{mph}=3 \mathrm{hr}
$$

$$
\mathrm{R}_{\mathrm{avg}}=\left(\mathrm{D}_{\mathrm{O}}+\mathrm{D}_{\mathrm{I}}\right) /\left(\mathrm{T}_{\mathrm{O}}+\mathrm{T}_{\mathrm{I}}\right)=(30 \mathrm{mi}+30 \mathrm{mi}) /(1 \mathrm{hr}+3 \mathrm{hr})=60 \mathrm{mi} / 4 \mathrm{hr}=15 \mathrm{mph}
$$

Double DRT: Catch up (p.66): Bob catches up to Ann in 1 hour 4 miles from school.
$\mathrm{D}_{\mathrm{Ann}}=\mathrm{D}_{\mathrm{Bob}} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}+1 ; \mathrm{R}_{\mathrm{A}}\left(\mathrm{T}_{\mathrm{B}}+1\right)=\mathrm{R}_{\mathrm{B}} \mathrm{T}_{\mathrm{B}} ; 2 \mathrm{mph}\left(\mathrm{T}_{\mathrm{B}}+1\right)=4 \mathrm{mph}\left(\mathrm{T}_{\mathrm{B}}\right) ; \mathrm{T}_{\mathrm{B}}=1 \mathrm{hr} ; \mathrm{D}_{\mathrm{B}}=4 \mathrm{mph} \cdot 1 \mathrm{hr}=4 \mathrm{mi}$

Page 68: Financial Word Problems

Price Markup on Cost (p.68): $\mathrm{N}=\$ 20+50 \%(\$ 20)=\$ 20+\$ 10=\$ 30$
Price Discount (p.69): $\mathrm{N}=\$ 20-50 \%(\$ 20)=\$ 20-\$ 10=\$ 10 ; \mathrm{N}_{\mathrm{tax}}=\$ 10+10 \%(\$ 10)=\$ 10+\$ 1=\$ 11$
Percent-Change (p.70): $\mathrm{P}=(\$ 15-\$ 20) / \$ 20=-5 / 20=-25 / 100=-25 \%$
Cost (p.71): C $=\$ 15 /$ toaster $\bullet 4$ toasters $=\$ 60$

Page 73: Work Word Problems

WRT: $\mathrm{W}_{\text {Both }}=\left(\mathrm{R}_{\text {Ona }}+\mathrm{R}_{\text {Mac }}\right) \mathrm{T}_{\text {Both }} ; 1 \mathrm{bk}=(1 \mathrm{bk} / \mathrm{hr}+1 \mathrm{bk} / 2 \mathrm{hr}) \mathrm{T} ; \mathrm{T}=2 / 3 \mathrm{hr}$ (bk=bike)

Page 74: Mixture Word Problems

VAT: $\mathrm{V}_{\mathrm{M}}=10 \%(100 \mathrm{gal})=10 \mathrm{gal} .(10+20 \mathrm{gal})=\mathrm{A}_{\mathrm{M} 20}(100+20 \mathrm{gal}) . \mathrm{A}_{\mathrm{M} 20}=25 \%$

Page 75: Conversion Word Problems

NCO (p.75): Inches $=12 \mathrm{in} / \mathrm{ft} \cdot 10 \mathrm{ft}=120$ inches
By Replacement (76): 120min(1/60hr) $=2 \mathrm{hr}$. $2 \mathrm{yd}(3 \mathrm{ft})=6 \mathrm{ft}$
By Ratio (76): F/5yd = 3ft/1yd; F = 15ft
Liquid Ladder (p.77): 8•2•2 = $32 \mathrm{oz} / \mathrm{qt}$
Linear Ladder (p.77): $12 \cdot 3=36$ in/yd
Time Ladder (p.77): $60 \cdot 24=1400 \mathrm{~min} /$ day

Additional Max Learning Math Books

Mental Math

Fraction Fun

