Max Learning's Mental Math

Table of Contents

WELCOME! 3
Note to Readers 4
Note to Teachers 4
Pronunciation Guide 4
BrainAids 5
CONCEPTS 6
Mental Manipulatives 6
Numbers 6
Place Values 7
Operators 7
ADDITION ATTACHES 8
Larger Pile (3+1=4) 8
Larger Hole ($-3+-1=-4$) 9
Smaller Pile ($3+-1=2$) 10
Smaller Hole ($-3+1=-2$) 11
Properties of Addition 12
Commutative Property of Addition: Changing Order 12
Associative Property of Addition: Group Activity 12
Additive Inverse: Matter meets Antimatter 13
Additive Identity Element: Zero Influence 13
Addition Layouts 13
Mental Addition (MA) 14
MA: Borrow. 14
MA: Find 10s 15
MA: Stack Signs 15
MA: Split \& Join 16
BrainDrain \#1 17
SUBTRACTION STEALS 18
Smaller Pile (3-1=2) 18
Smaller Hole ($-3--1=-2$) 19
Larger Pile (3--1=4) 20
Larger Hole (-3-1 = -4) 21
Properties of Subtraction 22
Subtraction Layouts 22
Mental Subtraction (MS) 23
MS: Bump 23
MS: Split \& Steal 24
MS: Dig Pile 25
MS: Fill Up 26
MS: Span \& Join 27
MULTIPLICATION MAGNIFIES 28
Larger Pile $(2 \times 3=6)$ 28
Larger Pile $(-2 \times-3=6)$ 28
Larger Hole ($2 \times-3=-6$) 29
Larger Hole $(-2 \times 3=-6)$ 29
Properties of Multiplication 30
Commutative Property of Multiplication: Changing Order 30
Associative Property of Multiplication: Group Activity 30
Distributive Property of Multiplication: A Rich Uncle 31
Multiplicative Inverse (Reciprocal): I Flip For You 32
Multiplicative Identity Element: One is the Loneliest Number 32
Multiplicative Property Of Zero: Makin' Nothin' 33
Multiplication Layouts 33
Multiples \& Factors 34
Factoring Tricks \& Trees 35
Mental Multiplication (MM) 36
MM: Split \& Double 36
MM: Split \& Magnify 36
MM: Factor \& Magnify 37
MM: Multiply 5 = Half Ten 37
MM: Multiply 25 = Quarter Hundred 37
MM: 11 Split \& Insert 38
MM: 5-End Squared 38
BrainDrain \#2 39
DIVISION DISSOLVES 40
Smaller Pile $(4 \div 2=2)$ 40
Smaller Pile $(-4 \div-2=2)$ 40
Smaller Hole ($4 \div-2=-2$) 41
Smaller Hole ($-4 \div 2=-2$) 41
Properties of Division 42
Distributive Property of Division: A Miserly Uncle 43
Division Property of One: A Perfect Fit 44
Division Layouts 44
Shrink or Grow? 45
Rainbow Division (aka Long Division) 46
Mental Division (MD) 47
MD: Split and Halve 47
MD: Dissolving Multiples 48
MM: Factor \& Dissolve 48
MD: Divide $5=$ Double Tenth 49
MD: Divide 25 = Double Double Hundredth 49
EXPONENTIATION EXPANDS 50
Expanding Bases: Unfolding Cards 50
Positive Bases: Positively Positive 51
Negative Bases: Oddly Negative 51
Multiplying Exponents: Mad Bees / Merge Powers 52
Raising a Base: Ram Bee / Ram Bees 53
Negative Exponents: Screening Bees 54
Dividing Bases: Screening Mad Bees 55
PEMDAS PRIORITIZES 56
Priority Of Operators 56
Parentheses: Open Me First! 56
Exponentiation: A Higher Power 57
Exponentiation Negation Controversy 57
Multiplication or Division: Fast Runners 58
Addition or Subtraction: Slow Walkers 58
Multiple Operator Problems: Give me a Number, please! 59
BrainDrain \#3 62
ANSWER KEY 63
MaxLearning.Net © 2002 * Latest revision 8/31/09

Welcome!

Hi, my name is Max Learning, and I'll be your teacher and guide.
My goal is to make math seem "real" to you, so you'll gain confidence and look forward to your next math challenge.
The fact that you're reading this book means you're eager to succeed and are willing to explore new ways to do so. So let's get started!

Why Is Math A Struggle? How This Book Can Help

Symbols
Math uses symbols, lots of them. It's as difficult to learn as a foreign language.

Mental Manipulatives

You'll learn to "see" three-dimensional objects behind each symbol.

BrainAids

You'll learn clever memory hints that make the rules easy and fun.

Rules
Math is based on rules, lots of them. It's hard not to confuse one for the other.

RUFF

You'll learn to be in a Relaxed, Uncluttered, Focused, and Flowing state of mind, which increases confidence and eases past traumas.

What's Good About Math?

Certainty

Math problems have right answers. An essay you wrote for English class, or a project you made for Art class, might seem fabulous to you, but maybe not to your teachers. However, in math, when you get the right answer, no one can argue with it.

Quest

Math problems are puzzles. The quest to solve them can be exciting! Math can be more fun than any game you'll ever play. If math becomes fun, you'll look forward to, rather than run from, it.

Magic

Math is the language of nature. Nearly everything we see, hear, touch and do can be described with math. Every image, color, and sound on a computer is based on math. In today's movies, you can't always tell what's real and what's been generated by some mathematical formula. In short, math is amazing - there's magic in it!

Note to Readers

For teaching/learning purposes, I've kept the demonstration problems in this book relatively simple, which may tempt you to solve them using traditional methods.
But for maximum results, it's important to take the time to learn and use the illustrated techniques. This may slow you down at first, but will pay off in the end. After all, it doesn't matter how quickly you solve a problem, if your answer is wrong!
You're learning a new, I hope, more interesting way of doing math, a way that links math symbols to real objects, if only in your imagination. As with learning anything new, it's
best not to rush; so relax, take your time, and enjoy the process.
As your mind begins to "see" tangible objects behind the numbers and symbols, your speed and accuracy will improve, and you'll be ready to tackle more complex problems.

For some of the Your turn activities, I paradoxically ask you to write down what you are thinking as you mentally solve a problem. Why? So you can compare your thought processes to the Answer Key in the back of the book.

Note to Teachers

It's popular in some math classes to teach numerical concepts using physical objects, like blocks, tiles, and other toy-like objects. Many students enjoy working with these "manipulatives" because they make math seem real, even fun.
However, you've undoubtedly discovered that success with manipulatives does not always translate into success with purely symbolic math. A key objective of this book is to teach students to visualize mental manipulatives, so that math symbols are seen as physical entities even when the "toys" are put away.
Because this is a techniques book rather than a drill \& practice book, it contains relatively few practice problems. However, once learned, students should be able to apply the same techniques to the numerous practice problems in traditional math textbooks, or to problems you make up for them to solve.

Pronunciation Guide

Sometimes it may not be obvious how to pronounce terms you have not heard spoken.
When you see a term followed by a pronunciation, refer to this guide as needed.

Vowels			Consonants	
Long	Short	Other	Hard	Soft
$\mathrm{aa}=\mathrm{ate}$	$\mathrm{a}=$ act	ai=air, ar=are, aw=paw	$\mathrm{k}=\mathrm{cat}$	$\mathrm{s}=$ ice
ee $=$ eel	e/eh = end		$\mathrm{g}=\mathrm{go}$	$\mathrm{j}=$ gem
ii $=$ hi	i/ih = hid		$\mathrm{s} / \mathrm{ss}=$ hiss	$\mathrm{z}=$ his
oh = no	$\mathrm{aw}=$ on	oo = book, or = for	ch = chin	sh=shin; zh=vision
		ow = how, oy = boy	th = thin	thh = this
yu = use	$\mathrm{u} / \mathrm{uh}=\mathrm{up}$	$\mathrm{uu}=$ too, $\mathrm{ur}=$ fur	Accent on: UP-ur-KAASS	

> Common Abbreviations
> aka $=$ also known as
> e.g. $=$ for example $($ think egzample $)$
> i.e. $=$ that is

BrainAids

It was a mouthful to say mnemonic (nee-MAWN-ik) device, so I coined the word BrainAid for memory hints that help you learn. Feel free to make up your own BrainAids. Most fall into one of the following "A" categories:

Analogy = Comparison

How to say it: uh-NOWL-uh-jee
What it is: A comparison of what you are trying to learn to what you already know.
Why it works: To learn, new brain fibers must grow and laboriously push their way through dense brain tissue, which can be very tiring. An analogy lets new information hitchhike along existing brain fibers, which is quicker and takes much less effort.

Analogy Example: Just as physical exercise builds new muscle fibers, mental exercise builds new brain fibers. Both take time, effort, and repetition.

Acronym = Name

How to say it: AK-roh-nim
What it is: A name made from the first letters of several words. Hint: Think nym = name.
Why it works: The letters of an acronym act like small hooks on which you can hang large words. You memorize a little to remember a lot.

Acronym Example: To maximize your learning, be in a learning frame of mind: Relaxed, Uncluttered, Focused, and Flowing. In other words, be RUFF.

Acrostic = Story

How to say it: uh-KRAW-stik
What it is: A story made from the first letters of several words. Hint: Think stic = story.
Why it works: Sometimes a "story" is easier to remember than an acronym, especially if the acronym is hard to pronounce.
Acrostic Example: You create the acronym MTF to help you remember the names of three new acquaintances, Mary, Tom, and Fred. But MTF is hard to pronounce, so you convert it into the acrostic "쓰y Three Friends."

Analogy: Building brain fibers.

Acrostic: My Three Friends

Concepts

Mental Manipulatives

Traditional manipulatives are physical objects, like tiles or blocks, which you "manipulate" to mimic math operations. Mental manipulatives are items you visualize when you see a number or operation.

They can turn lifeless symbols into reality-at least in your imagination. And unlike physical manipulatives, mental manipulatives are always with you to make math more engaging.

MathBots manipulate piles and holes or represent numbers.

Numbers

A number is a symbol for a quantity or value.

Numbers are symbols composed of individual numerals or digits.
Numbers don't exist in nature; only things do.
But things have quantity or value, which we represent with numbers.
BrainAid: Number $=$ Sqv [skwiv]: Symbol for a quantity or value.

Natural Numbers

Natural Numbers are the Counting numbers: 1, 2, 3....

$$
\square
$$

BrainAid: Natural numbers are used to count natural items, like sticks or stones.

- Positive Integers-Another name for the Natural Numbers.
- Cardinal Numbers-Another name for the Natural Numbers. (Think cardinal = counting.)
- Ordinal Numbers-Natural Numbers in ranked order: $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} \ldots$ (Think ordinal $=$ ordered.)

Whole Numbers

Whole Numbers include Zero and the Counting numbers: $0,1,2,3 \ldots$

0+

BrainAid: Whole numbers include zerO.

Integers (IN-teh-jurz)*

Integers include the negatives of the Counting numbers, Zero, and the Counting numbers:

$$
\ldots-3,-2,-1,0,1,2,3 \ldots
$$

BrainAid: Integers include negatives.

* See Pronunciation Guide on page 4.

Whole Number and Integer are often used interchangeably to mean a number that is not a fraction, decimal, or percent; i.e., not part of a whole. However, Whole Numbers include only zero and the Positive Integers.

Place Values

The place of a digit in a number determines its value. Digits on the right have the least value; digits on the left have the most value. Observe below how the digits in 4025 are individually valued.

Place-Value Table

$\begin{aligned} & \text { Million } \\ & 1,000,000 \end{aligned}$	hundred Thousand $100,000$	$\begin{gathered} \text { ten } \\ \text { Thousand } \\ 10,000 \end{gathered}$	Thousand 1,000	hundred 100	$\begin{gathered} \text { ten } \\ 10 \end{gathered}$	one 1
			4	0	2	5
4 Thousands =		000	Zeros act as placeholders in the Place-Value			
0 hundreds		0	Table, letting us write numbers of any size using only the digits 1-9. Before the			
2 tens		20	invention of zero, all numbers larger than 9			
5 ones			required their own symbols, which made for			
		025				

Operators

An operator is a symbol for a procedure or relationship.

Numbers by themselves do little unless we use operators to combine them in some way.
BrainAid: Operator = Spr [spur]: $\underline{\text { Symbol for a procedure or relationship. }}$
You need to 'spur' sqvs (numbers) on to get them to work together.

Arithmetic Operators

Arithmetic operators specify procedures.
The following appear on a 4 -function calculator.

Relational Operators

Relational operators specify relationships.
They include the following.

+ Add
- Subtract
\times Multiply
\div Divide
$=$ Equal
$\neq \quad$ Not equal to
$>$ Greater than
$<\quad$ Less than
$\geq \quad$ Greater than or equal to
$\leq \quad$ Less than or equal to

Computer Operators

Many of the common operators do not appear on computer keyboards. Below are alternates, typically used in computer spreadsheet formulas.

BrainAid

Be careful not to confuse the $>$ and $<$ symbols. The larger number goes on the larger side. Example: $7>6 ; 6<7$

* Asterisk (aka star) for multiply
/ Slash for divide
$\wedge \quad$ Caret [KAIR-et] for exponentiation.
<> Not equal to
$>=$ Greater than or equal to
$<=$ Less than or equal to

Addition Attaches Larger Pile (3 + 1 = 4)

ADDENDS		
Each number to be added is called an addend. Think of something you add to the end.	OPERATOR The plus sign is an operator that says to 'attach.' Plus is Latin for more.	SUM The result of an addition is called the sum. Think of it as the SUMmary of the addends.

Now that the MathBot has shown us how to attach piles, we can redraw the addition this way.

Try it: Use piles and an arrow to sketch the following addition: $2+1=3$

\square

Your turn: Imagine attaching piles. "See" the piles. Fill in the blanks.
\qquad

$$
\check{5+2}=
$$

\qquad
$\overleftarrow{6+2}=$ \qquad

If the smaller pile is on the left, attach it to the top of the larger pile on the right.
$\stackrel{\rightharpoonup}{\square}$
$2+7=$ \qquad
$2+4=$ \qquad
$\stackrel{\rightharpoonup}{1+9}=$ \qquad

Larger Hole (-3 + - $\mathbf{=}$ - 4)

To 'attach' holes, you can't carry one to the other...	..so dig the deep hole deeper and fill in the shallow one.	The shallow hole is gone. A deeper hole remains.
Negative Addends		

We can redraw this addition more compactly.

Try it: Use holes and an arrow to sketch the following addition: $-2+-1=-3$

Your turn: Imagine attaching holes. Check your answers in the back of this book.
$-3+-2=$ \qquad
$-5+-2=$ \qquad
$-6+-2=$ \qquad

If the shallower hole is on the left, attach it to the bottom of the deeper hole on the right.
$-2+-7=$ \qquad
$\xrightarrow{-2+-4=}$ \qquad
$-1+-9=$ \qquad

Smaller Pile (3-1 = 2)

To attach a tall pile and a shallow hole...	...push the pile into the hole.	The hole is filled and gone. A shorter pile remains.

Drawn more compactly, the addition would look like this.

Try it: Use piles, a hole, and an arrow to sketch the following addition: $2+-1=1$

Your turn: Imagine pushing a tall pile into a shallow hole. "See" yourself doing it.
$\overrightarrow{3+-2}=$
$\stackrel{\rightharpoonup}{5+-2}=$ \qquad
$6+-2=$ \qquad
If the hole is on the left, push the pile from the right.
\qquad $-2+4=$
$\overleftarrow{-1+9}=$ \qquad

Smaller Hole (-3 + 1 = -2)

To attach a deep hole and a short pile...	..push the pile into the hole.	The pile is gone. A shallower hole remains.

Here's the compact version.

Try it: Use a pile, holes, and an arrow to sketch the following addition: $-2+1=-1$

Your turn: Visualize pushing a short pile into a deep hole.

$$
-3 \leftarrow 2=\boxed{-5+2}=\square \quad-6+2=
$$

If the hole is on the right, push the pile from the left.
$\stackrel{+}{2+-7}=$ \qquad
$2+-4=$ \qquad
$1+-9=$ \qquad

Properties of Addition

Properties are the rules of the game.
These rules make the mental math tricks in this book possible.

Commutative Property of Addition: Changing Order

Property: Addends can be added in any order.
BrainAid: Commutative [pronounced cuh-MYU-tuh-tiv]* comes from
commute which can mean to change an order, as in "to commute a prisoner's sentence," or to change the order of travel, as in "to commute from home to office in the morning, then from office to home in the evening." Think of the "co" in commutative as meaning change order.

$$
\begin{aligned}
& 1+2=3 \\
& 2+1=3
\end{aligned}
$$

Changing the order does not change the sum.

Morning Commute
\qquad

With three addends:
$1+2+3=6$
$1+3+2=6$
$2+1+3=6$
$2+3+1=6$
$3+1+2=6$
$3+2+1=6$
Got the idea?

Associative Property of Addition: Group Activity

Property: Addends can be added in any group.
BrainAid: Associative [pronounced uh-SOH-shee-uh-tiv]* comes from associate which means to group together, as in "friends like to associate with each other." Associated addends are grouped inside of parentheses. Operations inside of parentheses are performed first.

$$
\begin{aligned}
(1+2)+3 & =1+(2+3) \\
3+3 & =1+5 \\
6 & =6
\end{aligned}
$$

[^0]
Additive Inverse: Matter meets Antimatter

Definition: An Additive Inverse has the same value but the opposite sign of an addend.
Negation: To create an additive inverse, you negate [nih-GAAT or NAA-gaat] an addend by placing a negative sign in front of it.
Property: An addend plus its inverse equals zero.
BrainAid: Inverse means opposite. Like matter and antimatter, inverses cancel each other out.

The pile is as tall as the hole is deep.	Push the pile into the hole.	The pile and hole are gone. Nothing remains.

Additive Identity Element: Zero Influence

Definition: The number zero is the Additive Identity Element.
Property: An addend plus zero equals the addend.
BrainAid: If you add something (e.g., wig) to your head or face, it influences your appearance. But if you add nothing (zero) to your head or face, it has zero influence-your identity remains the same.

Addition Layouts

Addend
Addend + Addend $=$ Sum

+ Addend
Sum

Mental Addition (MA)

When pencil and paper aren't available, use your head instead!

MA: Borrow

Tip: Mentally, it's easier to add numbers that end in zero.
Trick: When one addend is close to a number that ends in zero ($10,20,30$, etc.), borrow enough from another addend to make it so; then add.

When one addend is 9 (or ends in 9)...	..borrow 1 from the other addend.	Think: $9+5=10+4=14$.

Your turn: Mentally borrow to make one addend end in zero, then add.

$\underset{49+4}{\hbar 2+}+\ldots=$
$\overparen{6+79}=\ldots+\ldots=$

More Borrowing

Borrowing 1 to make 100 $99+32=100+31=131$
Borrowing 2 to make 100 $98+32=100+30=130$
Borrowing 1 to make 1000 $999+158=1000+157=1157$

Your turn: Imagine piles as you mentally add by borrowing.
$99+44=$ \qquad $99+86=$ \qquad $999+47=$ \qquad
$99+99=$ \qquad
$72+98=$ \qquad

$$
998+317=
$$

\qquad

MA: Find 10s
Tip: Mentally, it's easier to add 10s.
Trick: Find and group addends that make 10; attach remaining addend(s).

With several addends, look for any that add to 10.	Attach those addends first. Think: $4+6=10$	Now attach the remaining addend. Think: $=10+5=15$

Your turn: Make 10s and fill in the missing numbers.

MA: Stack Signs

Tip: Mentally, it's easier to add negative and positive numbers separately.
Trick: Stack all holes; stack all piles; attach resulting hole and pile.

Stack holes with holes and piles with piles.	Attach the hole and pile.	The sum.

Your turn: Stack by signs, then attach the resulting hole and pile.

$$
\begin{gathered}
-3+4+-6+3 \\
-3+\underset{-9+}{-9+}+4+3
\end{gathered}
$$

$$
6+-5+2+-1
$$

$$
3+-1+-4+2+1
$$

$6+\ldots+\ldots+-1$
_ + \qquad
$3+{ }_{3}+\ldots+\ldots+-4$

MA: Split \& Join

Tip: Mentally, it's easier to add numbers highest-to-lowest by place value (see page 7).
Trick: Split the addends into place values (100s, 10s, 1s), then join digits starting with the highest place value, so that the final sum is already in the order you'd think or say it.

Place-Value Sum Less than 10
If the ones-place sum is less than 10 , join that sum directly to the tens-place sum.

Place-Value Sum 10 or More
If the ones-place sum is 10 or more, split it into $10+$ a remainder, then join each in turn.

Your turn: As you mentally add, fill in the boxes with what you are thinking.	Your turn: Fill in the boxes with what you are thinking. Check your answers in the back.
$\begin{gathered} 72+14 \\ 70+10= \\ 2+4= \end{gathered}$	$\begin{gathered} 57+28 \\ 50+20= \\ 7+8= \\ 70+10=80+ \end{gathered}$
$\begin{array}{r} 42 \\ +53 \\ 40+\square= \\ 2+\square= \end{array}$	$\begin{aligned} & \begin{array}{l} 96+77 \\ + \\ + \\ + \\ + \\ + \end{array}+160 \end{aligned}$

BrainDrain \#1

Fill in the Crossword Puzzle

Across

1. The \qquad property reorders addends.
2. Add the \qquad addend place value first.
3. Inverse means \qquad .
4. The plus sign is a mathematical \qquad .
5. Zero is the Additive \qquad Element.

Down

2. Whole numbers include \qquad .
3. Plus means \qquad .
4. A number is a \qquad for a quantity or value.
5. Integers include \qquad numbers.

True/False

Write T or F in the blanks. All whole numbers are integers.
2 \qquad All integers are whole numbers.

3 All positive integers are natural numbers.

4 \qquad The associative property groups addends.
5 \qquad The Additive Inverse is zero.
6 \qquad $2^{\text {nd }}$ is an example of a Cardinal number.

Daily Practice

The more mental addition you do, the faster and more accurate you'll be. Look for numbers to add together in the newspaper, on street signs, on license plates, etc. Or just pick numbers at random, and see if you can add them in your head. Take an extra second to visualize piles and holes, so you have a feel for the magnitude of numbers and avoid calculation errors.

Subtraction Steals
 Smaller Pile (3-1 = 2)

| MINUEND - SUBTRAHEND |
| :---: | :---: | :---: | :---: |
| The first number is the |
| MIN-uu-end. The Second |
| number is the SUB-truh-hend. | | OPERATOR |
| :---: |
| Minus is Latin for less. The |
| minus sign says to 'steal' the |
| subtrahend and an equal... | | DIFFERENCE |
| :---: |
| I.amount from the minuend to
 diminish it. What's left
 is called the difference. |
| Minuend |

We can redraw the subtraction this way.

Try it: Use piles and arrows to sketch the following subtraction: $2-1=1$

Your turn: Imagine stealing the subtrahend and an equal amount from the minuend. These are simple problems, but taking time to visualize the piles will pay off in accuracy.
\qquad

Smaller Hole (-3--1 = -2)

You can't pick it up and carry it away, so how do you steal a hole? You fill it with a pile!	And you add the same size pile to the minuend to maintain the difference.	The subtrahend hole vanishes, and the difference is a smaller hole.
	Fill to 'steal'	

Try it: Use holes, piles, and arrows to sketch the following subtraction: $-2--1=-1$

Your turn: Mentally fill in the subtrahend hole, and put an equal amount in the minuend hole.

Larger Pile (3--1 = 4)

As before, you must steal the subtrahend hole by filling it...	...and adding the same amount to the minuend...	... which results in a larger pile as the difference.

We can redraw the subtraction more compactly.

Try it: Use piles, a hole, and arrows to sketch the following subtraction: $2-1=3$

Your turn: Imagine filling in the subtrahend and adding an equal amount to the minuend.

$6--3=$ \qquad
$9--6=$ \qquad

Larger Hole (-3-1 = -4)

You can steal the subtrahend pile, but how do you steal a pile from the minuend hole?	You dig the hole deep enough to remove a pile of equal size!	The resulting difference is a deeper hole.

Here's the condensed version.

Try it: Use holes, piles, and arrows to sketch the following subtraction: $-2-1=-3$

Your turn: Mentally steal the subtrahend pile and an equal amount from the minuend hole.
$\nearrow \nearrow$
$-4-2=$
$-7-3=$
$\nearrow \nearrow$
$-5-2=$
$-9-3=$

$$
-6-2=
$$

\qquad
\qquad

Properties of Subtraction

Subtraction lacks the common properties of addition.

No Commutative Property of Subtraction

With addition you can change the number order, but not with subtraction.
Example: $1-2=-1$ is not the same as $2-1=1$.
BrainAid: Governors do not commute the sentences of negative prisoners.

No Associative Property of Subtraction

With addition, you can arrange numbers in any group, but not with subtraction.
Example: $(1-2)-3=-1-3=-4$ is not the same as $1-(2-3)=1--1=2$
BrainAid: You should not associate with negative people.
No Subtractive Inverse
With addition, inverses cancel each other out and make zero, but not with subtraction.
Example: 3 and -3 are inverses, but $3--3=6$. It does not equal zero.

Subtractive Identity Element?

With addition, $2+0=2$ and $0+2=2$. With subtraction, this only works if 0 is the subtrahend.
Example: $2-0=2$ but $0-2=-2$

Subtracting a Negative Makes A Positive

When you see a double negative, imagine rotating the first minus sign and placing it over the second to create a plus sign.

$$
\begin{gathered}
\text { Q}=十 \\
\text { Example: } 3 \cong_{-1}-3+1=4
\end{gathered}
$$

Number Line Difference

A number line is another way to show the difference between positive and negative numbers. Example: $3--1=4$, i.e., the difference between 3 and -1 is 4 (i.e. is Latin for id est which means "that is").

Mental Subtraction (MS)
 MS: Bump

Tip: Mentally, it's easier to subtract numbers that end in zero.
Trick: When the subtrahend is close to a number that ends in zero ($10,20,30$, etc.) bump it up or down to make it so. Likewise, bump the minuend up or down the same amount to maintain the difference between the two, then subtract.

Bump Up

When the subtrahend is below a number that ends in zero...	..bump both it and the minuend $u p$.	Think: $13-9=$ $14-10=4$

Your turn: Fill in the blanks as you bump up both numbers, then subtract.

Bump Down

When the subtrahend is above a number that ends in zero...	..bump both it and the minuend down.	Think: $13-11=$ $12-10=2$	

Your turn: Fill in the blanks as you bump both numbers down, then subtract.

$$
\begin{gathered}
\mathbf{5 0}-\mathbf{3 1}=_-30= \\
\downarrow \downarrow-\quad \\
70-\mathbf{4 2}=_-\quad=
\end{gathered}
$$

MS: Split \& Steal

Tip: Mentally, it's easier to subtract numbers highest-to-lowest by place value (see page 7).
Trick: Split the minuend and subtrahend into place values ($100 \mathrm{~s}, 10 \mathrm{~s}, 1 \mathrm{~s}$), then subtract digits starting with the highest place value, so that the difference is already in the order you'd think or say it.

All Minuend Digits Larger If all minuend place values are equal to or greater than the subtrahend values beneath, join resulting piles.
Some Minuend Digits Smaller If some minuend place values are less than the subtrahend values beneath, join the resulting pile and hole.

Your turn: As you mentally subtract, fill in the boxes with what you are thinking.	Your turn: Fill in the boxes with what you are thinking. Check your answers in the back.
$\begin{gathered} 76-34 \\ 70-30= \\ 6-4= \\ 42 \end{gathered}$	$\begin{gathered} 76-38 \\ 70-30= \\ 6-8= \end{gathered}$
$\begin{aligned} & 48 \\ &-25 \\ &---=20 \\ &---=3 \end{aligned}$	$\begin{gathered} 48 \\ -29 \\ ---\quad=20 \\ ---=-1 \end{gathered}$

MS: Dig Pile

Tip: Mentally, when subtracting, it's quicker to dig a hole into a pile. Trick: Rather than pushing a pile into a hole, dig directly into the pile.

What remains when you dig a 4-deep hole into a 20-high pile? A 16-high pile.

Memorize The Hole/Pile Pairs
Starting with a 10-high pile:

If you dig -1 , you're left with 9 .
If you dig -2 , you're left with 8 .
If you dig -3 , you're left with 7 .
If you dig -4 , you're left with 6
If you dig -5 , you're left with 5

If you dig -6, you're left with 4
If you dig -7, you're left with 3
If you dig -8 , you're left with 2
If you dig -9 , you're left with 1

Try it

Starting with a 40-high pile:
If you dig -3 , you're left with \qquad .

If you dig -8 you're left with \qquad .

Dig Pile With Split \& Steal

43-14

Think: $40-10=30$-high pile
Dig a (3-4) 1-deep hole $=\mathbf{2 9}$

132-54
Think: $100-0=100$-high pile
Dig a $(30-50) 20$-deep hole $=80$
Dig a $(2-4) 2$-deep hole $=78$

Your turn: Dig piles to fill in the blanks.

MS: Fill Up

Tip: Mentally, when a minuend ends in zeros (100, 1000, etc.), it's easier to compute the difference by filling up the gap between the subtrahend and the minuend.

Trick: Add enough to the subtrahend to make it reach the minuend.

Here are the rules for filling up, starting with the highest place value.

Here's an example with larger numbers.

1	0	0	MINUEND Fill Up	2	0	0	0
0	4	5		1	6	4	3
	5	5	SUBTRAHEND	3		5	7
Fill to 1 less than minuend	$\begin{gathered} \text { Fill } \\ \text { to } \\ 9 \end{gathered}$	$\begin{gathered} \text { Fill } \\ \text { to } \\ 10 \end{gathered}$	Rule	Fill to 1 less than minuend	$\begin{gathered} \text { Fill } \\ \text { to } \\ 9 \end{gathered}$		$\begin{gathered} \text { Fill } \\ \text { to } \\ 10 \end{gathered}$

Try it: Starting with the highest place value, fill up the gap.

4	0	0	0	
1	2	4	6	
Fill to 1 less than minuend	Fill to to			
9				

Why it works
Partially filling each place value from highest to lowest creates an answer in the order that you'd think or say it. The final step, filling the 1 s -place to 10 forces a 1 to be carried to the 10s-place which fills it, forcing a 1 to be carried to the $100 \mathrm{~s}-\mathrm{place}$, and so on until this cascading effect fills up the entire gap.

Your turn: Fill up to find the differences.

$100-37=\ldots$	$200-58=\ldots$	$200-132=\ldots$
$1000-374=_$	$2000-582=_$	$2000-1329=_$

MS: Span \& Join

Tip: Mentally, when the minuend is greater than and the subtrahend is less than a number that ends in zeros (100,1000 , etc.), it's easier to find the difference by spanning both gaps.
Trick: Insert the zero-ending number between the minuend and the subtrahend. Fill both gaps and add.
$\left.\begin{array}{|c|c|c|c|}\hline \text { The minuend is above 100; } \\ \text { the subtrahend is below 100. }\end{array} \quad \begin{array}{c}\text { Think: } 65 \text { to } 100=35 . \\ \text { Think: } 100 \text { to } 120=20 .\end{array} \quad \begin{array}{c}\text { Think: } 35+20=55, \\ \text { which is the difference. }\end{array}\right]$

Your turn: Fill in the blanks as you span and join the gaps.
$140-90=$
$116-40=$ \qquad
$250-175=$
325-195 = \qquad

Century Span

This technique is especially useful for figuring the span in years when a century mark is crossed.

What was the lifespan of someone who was born in 1846 and died in 1942?

Your turn: Span the century and fill in the blanks.

Born: 1936 Died: 2002. How many years?
2002

Multiplication Magnifies Larger Pile ($2 \times 3=6$)

MULTIPLIER Think of the multiplier as the magnifier.	OPERATOR Imagine the times symbol, \times, etched into a magnifying glass.	MULTIPLICAND The multiplicand is the number that can be magnified.	PRODUCT Think of a product made in a factory from smaller parts.
Multiplier	Product		

Your turn: Imagine magnifying a pile.

Larger Pile ($-2 \times-3=6$)
MULTIPLIER

Your turn: Imagine stealing a magnified hole by filling it with a pile.
$\overrightarrow{-2 \times-5}=$
$\overrightarrow{-5 \times-4}=$
$\overrightarrow{-3 \times-4}=$ \qquad
\qquad
\qquad

Larger Hole (2 x - 3 = -6)

MULTIPLIER \quad OPERATOR \quad MULTIPLICAND \quad PRODUCT

Your turn: Imagine magnifying a hole.

| $\overrightarrow{2 \times-4}=$ | $\overrightarrow{3 \times-2}=$
 $3 \times-5$$=-$ |
| :--- | :--- | | $\overrightarrow{4 \times-3}=$ |
| :--- |
| 2×-7 |$=-\quad$| 1×-9 |
| :--- |

Larger Hole (-2 $\times 3=-6$)

MULTIPLIER \quad OPERATOR

Your turn: Imagine stealing a magnified pile by pushing it into a hole.
$\overrightarrow{-2 \times 5}=$
$\overrightarrow{-5 \times 4}=$
$\begin{array}{ll}\overrightarrow{-3 \times 4}= & \overrightarrow{-3 \times 2}= \\ \overrightarrow{-2 \times 8}= & \overrightarrow{-1 \times 9}=\end{array}$ \qquad

Properties of Multiplication

Multiplication has many of the same properties as addition.

Multiplication = Fast Addition	Multiplication Variations While Addition saunters along at a leisurely Maltiplication has several operators... Multiplication zips on by. Multiplication is fast if you've memorized your times tables.
2×3	
$2 \bullet 3$	
$2 * 3$	

Commutative Property of Multiplication: Changing Order

Property: Multipliers can be multiplied in any order.
BrainAid: See the Commutative Property of Addition BrainAid.
Also, think of the "mu" in commutative as meaning multiplication. And while you're at it, think of the "at" in commutative as meaning addition, since only addition and multiplication are commutative-subtraction and division are not!

$$
\begin{aligned}
& 2 \times 3=6 \\
& 3 \times 2=6
\end{aligned}
$$

Changing the order does not change the product.

With 3 multipliers:
$2 \times 3 \times 4=24$
$2 \times 4 \times 3=24$
$3 \times 2 \times 4=24$
$3 \times 4 \times 2=24$
$4 \times 2 \times 3=24$
$4 \times 3 \times 2=24$

Associative Property of Multiplication: Group Activity

Property: Multipliers can be multiplied in any group.
BrainAid: See the Associative Property of Addition BrainAid.

$$
\begin{aligned}
(2 \times 3) \times 4 & =2 \times(3 \times 4) \\
6 \quad \times 4 & =2 \times 12 \\
24 & =24
\end{aligned}
$$

Distributive Property of Multiplication: A Rich Uncle

Property: A multiplier outside a set of parentheses magnifies each added or subtracted item that is inside the parentheses. Pronounced [di-STRI-byu-tiv].

BrainAid
Imagine a rich uncle distributing his wealth to each of his nieces and nephews. Being scrupulously fair, he equally magnifies whatever value each already has.

Your turn: Be the rich uncle and distribute your wealth fairly as you fill in the blanks.

$$
\begin{array}{ll}
3(4+2 b)=12+\ldots & 4(6 a-5)=+- \\
(a+2)=4 a+8 & 2(++\infty)=6 a+10 b
\end{array}
$$

TRAP!

The Distributive Property does not apply to divided or multiplied items inside the parentheses.

In cases like this, the multiplier magnifies only the first item.

$$
2(a \div b)=2 a \div b
$$

(Try both situations with $\mathrm{a}=6$ and $\mathrm{b}=3$)

Multiplicative Inverse (Reciprocal): I Flip For You

Definition: A Multiplicative [mul-tih-PLIK-uh-tiv] Inverse is the reciprocal [ree-SIH-proh-kuhl] of a multiplier, which is essentially the number flipped upside down. For example:

- If the multiplier is \mathbf{a}, its reciprocal is $\mathbf{1 / a}$.
- If the multiplier is $\mathbf{- a}$, its reciprocal is $\mathbf{- 1 / a}$.
- If the multiplier is $\mathbf{1} / \mathbf{a}$, its reciprocal is $\mathbf{a} / \mathbf{1}$ or just \mathbf{a}.
- If the multiplier is \mathbf{a} / \mathbf{b}, its reciprocal is \mathbf{b} / \mathbf{a}.
\mathbf{a} and \mathbf{b}
can be
any
numbers.

Property: A multiplier times its reciprocal equals 1; e.g., $\mathbf{a} \times \mathbf{1} / \mathbf{a}=\mathbf{1}$.
BrainAid: When a boy meets a girl he likes, he 'flips' for her. If she reciprocates (returns) his feelings, they fall in love and marry, becoming one.

Your turn: Create reciprocals for each number.

4
5 \qquad
\qquad 1/5

Multiplicative Identity Element: One is the Loneliest Number

Definition: The number 1 is the Multiplicative Identity Element.
Property: A multiplier times 1 equals the multiplier.
BrainAid: Your identity consists of you and you alone.

Multiplicative Property Of Zero: Makin' Nothin'

Property: A multiplier times 0 equals 0 .
BrainAid: Somethin' times Nothin' leaves Nothin'.

Multiplication Layouts

Multiplier \times Multiplicand $=$ Product
Multiplicand
\times Multiplier
Product

Two Multiplied Negatives Make A Positive

When you multiply two negative numbers, imagine rotating the first minus sign and placing it over the second minus sign to create a plus sign for the product.

$$
\begin{gathered}
\text { Xen }=+ \\
\text { Example: }-3 \times-1=3 \times+1=+3
\end{gathered}
$$

Multiples \& Factors

A multiple is another name for product. A factor is another name for a multiplier.
Multiples are products created by multiplying a base number times a series of numbers.

$$
\text { Base } \times \text { Number }=\text { Multiple }
$$

Example: $2 \times 4=8$ (8 is a multiple of base 2 and the number 4).
Your turn: Fill in the blanks in this Multiples Table.

Factors are multipliers that combine to make products.
Factor \times Factor $=$ Product
Example: $2 \times 4=8$ (2 and 4 are factors of 8).
BrainAid: Factories make products. Factors make products.

BrainAids

$\underline{\text { Multiples }}=$ Products
$\underline{\text { Factors }}=\underline{\text { Multipliers }}$
MPs (Military Police)
listen to FM radios.
$\underline{\text { Multiples }}=\underline{\text { More }}$ * because they're greater than their factors.
$\underline{\text { Factors }}=\underline{\text { Fewer }}{ }^{*}$ because they're less than their multiples.

* providing the factors are positive integers.

Composite Factors

Integers divisible by 1 and themselves, and at least one other number.
Do you remember the definition of an integer? Check your answer on page 6 .
Example: 4 is divisible by 1, 4, and 2.
Partial List: ...-8, $-6,-4,4,6,8,9,10,12,14 \ldots$
BrainAid: Composites are composed of many numbers.

Prime Factors

Integers divisible by 1 and themselves only.
Example: 3 is divisible by 1 and 3 only.
Partial List: $\ldots-7,-5,-3,-2,2,3,5,7,11,13,17,19,23,29,31 \ldots$
BrainAid: Primes, like prima donnas, prefer to work alone.
Fact: 2 is the only even prime factor.

0 and 1

By definition, 0 and 1 are neither prime nor composite.

Factoring Tricks \& Trees

Factoring is the process of finding a product's factors.
To factor means to extract the multipliers that form a product.
Thinking in reverse, factors are also the divisors of a product.

Noun or Verb or Both?

As a noun, factor means multiplier or divisor. As a verb, factor means to find the multipliers or divisors.

Factoring Tricks

A product is evenly* divisible by a factor of:

2-If the product is even (i.e., ends in $0,2,4,6$, or 8).
3-If the sum of the product's digits is a multiple of $3(321: 3+2+1=\underline{6})$.
4 -If the product's last 2 digits are a multiple of 4 (316).
5-If the product ends in 0 or 5 (76드).
6-If the product fits the tricks for both 2 and 3 above ($46 \underline{2}: 4+6+2=\underline{12})$.
7 -If the product's $1^{\text {st }}$ digits minus ($2 \times$ the last digit) is 0 or multiple of 7 [112: $\left.11-(2 \times 2)=11-4=\underline{7}\right]$.
8 -If the product's last 3 digits are 000 or a multiple of 8 (2104).
9-If sum of the product's digits is a multiple of $9(864: 8+6+4=\underline{18})$.

* Technically, every number is divisible by every number (except 0), but may not be exactly so; e.g., $10 \div 4=2 \frac{1}{2}$

Your turn: Answer Yes or No and tell why 5580 is or is not evenly divisible by 4, 5, 6, and 9 .

$\mathbf{2}$	Yes, because 5580 is an even number
$\mathbf{3}$	Yes, because $5+5+8+0=18$ which is a multiple of $3(18 / 3=6)$
$\mathbf{4}$	
$\mathbf{5}$	
$\mathbf{6}$	
$\mathbf{7}$	No, because $558-(2 \times 0)=558-0=558$ which is not 0 or a multiple of $7(558 / 7=795 / 7)$
$\mathbf{8}$	No, because 580 is a not a multiple of $8(580 / 8=71 / 4)$
$\mathbf{9}$	

Factoring to Primes with a Factor Tree

1. Draw two branches beneath the product to be factored.
2. Divide out a prime factor and place it under the left branch with the composite under the right branch.
3. Repeat the process with the composite factor until all factors are prime. Box or shade the primes.

Factor Tree

Factor Tree

Your turn: Create Factor Trees to find prime factors for the following products:

15	16	18

Mental Multiplication (MM)
 MM: Split \& Double

Tip: Mentally, it's easier to double numbers highest-to-lowest by place values.
Trick: Split the multiplicand into place values (100s, 10s, 1s), then double starting with the highest place value. Join the products and the answer is already in the order you'd think or say it.

Your turn: Mentally split and double each number.
2×34
2×47
2×78
$2 \times 30=$ \qquad
$2 \times-=$
$2 \times \square=$
$2 \times$ \qquad
\qquad

Bonus Tip: To multiply by 4, double the number twice.

MM: Split \& Magnify

Tip: Mentally, it's easier to multiply highest-to-lowest by place values.
Trick: Same as Split \& Double, but for any multiplier.

Your turn: Mentally split and magnify each number.
3×34
6×47
7×65
$3 \times 30=$ \qquad
$6 \times \ldots=$ \qquad
$7 \times$ \qquad
$3 \times 4=$
$6 \times$ \qquad
$7 \times$ \qquad $=$ \qquad

MM: Factor \& Magnify

Tip: Mentally, it's sometimes easier to factor a multiplier before multiplying.
Trick: Factor a multiplier, then regroup and multiply with the smaller factors in turn.

14×30

Think: $(7 \times 2) \times 30=7 \times(2 \times 30)=7 \times 60=420$
Your turn: Factor, regroup, and multiply.

$$
\begin{gathered}
12 \times 15 \\
\left(6 \times _\right) \times 16 \times 6 \times\left(_\right)=\quad\left(_\times 2\right) \times 45=8 \times\left(_\right)=
\end{gathered}
$$

MM: Multiply 5 = Half Ten

Tip: Mentally, it's sometimes easier to convert a multiplier of 5 into its equivalent $1 / 2 \times 10$.
Trick: Halve the number and multiply by 10 (add a zero or move the decimal point one right).

$$
\begin{gathered}
\mathbf{5} \times \mathbf{2 2} \\
\text { Think: } 1 / 2 \times 22=11 \times 10=110
\end{gathered}
$$

Your turn: Halve the number and multiply by 10 .
5×24
$1 / 2 \times 24=\ldots \quad \times 10=$
5×140
$1 / 2 \times{ }_{2}=Z_{\sim} \times 10=$
5×68
 5×244
$1 / 2 \times \ldots=\ldots \times 10=$ \qquad

MM: Multiply 25 = Quarter Hundred

Tip: Mentally, it's sometimes easier to convert a multiplier of 25 into its equivalent $1 / 4 \times 100$. Trick: Quarter the number and multiply by 100 (add two zeros or move the decimal point two right).

$$
25 \times 16
$$

Think: $1 / 4 \times 16=4 \times 100=400$
Your turn: Quarter the number and multiply by 100 .
$\mathbf{2 5} \times 24$
$1 / 4 \times 24=\ldots \times 100=$
\qquad

$$
25 \times 88
$$

$$
1 / 4 \times \ldots={ }^{1} \times 100=
$$ 25×36

$1 / 4 \times{ }^{1} \times \quad=\quad \times 100=$ \qquad $\mathbf{2 5} \times \mathbf{3 2 0}$
$1 / 4 \times \quad=\quad \times 100=$ \qquad

MM: 11 Split \& Insert

Tip: Mentally, it's easier to multiply a 2-digit multiplicand by 11 using this trick.
Trick: Split the multiplicand digits apart; then insert the sum of the split digits in the center.
If the sum is 10 or more, carry and add the 1 to the left place value.

Your turn: Mentally multiply by 11.

\qquad

MM: 5-End Squared
Tip: Mentally, it's easier to square (multiply by itself) a number that ends in 5 using this trick.
Trick: Replace one of the left digits with the next higher digit and multiply. Follow with 25.

2	3
$\not \mathbf{} 5$	25
$\times 15$	$\times 25$
$\downarrow \downarrow$	$\downarrow \downarrow$
225	625

Your turn: Mentally square these numbers.

BrainDrain \#2

Fill in the Crossword Puzzle

Across

1. A factor is a \qquad .
2. The \qquad Property multiplies items in ().
3. The Multiplicative Identity Element is \qquad .
\qquad or a verb.

Down

3. A multiple is a \qquad .
4. The \qquad property groups multipliers.
5. $1 \times 0=0$ demonstrates the Property of \qquad
6. A \qquad factor is divisible only by 1 and itself.
7. A multiplicative inverse is also called a \qquad

True/False

Write T or F in the blanks.
1 \qquad The commutative property holds for subtraction.
\qquad The associative property holds for subtraction.

3 \qquad -6 is a reciprocal of 6 .

4 \qquad A factor is less than a multiple.
5 \qquad 57 is a prime factor.

Daily Practice

Continue to seek out numbers in newspaper and magazine articles, on license plates, and street signs. Practice subtracting dates to see how many years have elapsed. Practice doubling numbers, multiplying by $5,25,11$, etc. Challenge yourself! The more you practice, the faster and more accurate you'll be.

Division Dissolves
 Smaller Pile ($4 \div 2=2$)

DIVIDEND Imagine a bucket of liquid.	OPERATOR The \div sign means to dissolve the tablet into the liquid.	DIVISOR Imagine a tablet that dissolves as many times as it fits.	QUOTIENT [Kwo-shunt] The result is the quotient which is Latin for how many times.
	Operator	Divisor 2	

Your turn: Dissolve the positive tablet into the positive liquid as many times as it fits.

Your turn: Dissolve the negative tablet into the negative liquid as many times as it fits.
$-6 \div-3=$ \qquad $4 \div-2$. \qquad $40 \div-2=$ \qquad
$-8 \div-2 \rightarrow$ \qquad
$-8 \div-4$ \qquad
$-12 \div-4-$ \qquad

Smaller Hole (4 - - $\mathbf{2}=\mathbf{- 2}$)

Your turn: Dissolve the negative tablet into the positive liquid, then steal the result.
$6 \div-3$ \qquad $6 \div-2 ง$ \qquad $10 \div-2$ \qquad
$8 \div-2-$ \qquad
$8 \div-4-$ \qquad
$12 \div-4=$ \qquad

Smaller Hole (-4 $\div 2$ = -2)

Your turn: Dissolve the positive tablet into the negative liquid, then steal the result.
$-6 \div 3=$ \qquad $-6 \div 2-$ \qquad $-10 \div 2-$ \qquad
$-8 \div 2-$ \qquad
$-8 \div 4-$ \qquad
$-12 \div 4-$ \qquad

Properties of Division

Division $=$ Fast Subtraction

While Subtraction takes multiple steps to deplete a number, Division does it in one step.

$8-2-2-2=2$

$8 \div 4=2$

Division Variations

Division has a variety of operators.

$$
\begin{gathered}
4 \div 2 \\
4 / 2 \\
\frac{4}{2} \\
2 \longdiv { 4 }
\end{gathered}
$$

Imagine a hinged, rotating, detachable wall table.

Division lacks most of the common properties of Multiplication.

No Commutative Property of Division

With multiplication, you can change the number order, but not with division.
Example: $4 \div 2=2$ is not the same as $2 \div 4=1 / 2$.
BrainAid: Governors do not commute the sentences of divisive prisoners.

No Associative Property of Division

With multiplication, you can arrange numbers in any group, but not with division.
Example: $(8 \div 4) \div 4=2 \div 4=1 / 2$ is not the same as $8 \div(4 \div 4)=8 \div 1=8$
BrainAid: You should not associate with divisive people.

No Division Inverse

With multiplication, inverses (aka reciprocals) multiply to make 1, but not with division.
Example: 3 and $1 / 3$ are inverses, but $3 \div 1 / 3=9$. It does not equal one.

Division Identity Element?

With multiplication, $2 \times 1=2$ and $1 \times 2=2$. With division, this only works if 1 is the divisor.
Example: $2 \div 1=2$ but $1 \div 2=1 / 2$

Distributive Property of Division: A Miserly Uncle

Property: A divisor dissolves each added or subtracted item above it.

This is the same as the Distributive Property of Multiplication when the multiplier is a fraction:

$$
1 / 2(4 a+6 b-8 c)=1 / 2(4 a)+1 / 2(6 b)-1 / 2(8 c)=2 a+3 b-4 c
$$

BrainAid: Imagine a miserly uncle who decides to dissolve the wealth of his nieces and nephews. Being scrupulously unfair, he equally reduces whatever value each already has.

Your turn: Be a miserly uncle and equally dissolve the wealth of your nieces and nephews.

TRAP!

The Distributive Property does not apply to more than the first divided or multiplied item.

In cases like this, the divisor dissolves only the first item.

$$
(6 a \div 4 b) / 2=3 a \div 4 b
$$

Division Property of One: A Perfect Fit

Property: Any number divided by itself equals 1.
BrainAid: A divisor dissolves (fits) exactly one time into an equal dividend.
Exception: Division by zero is not allowed-You can't dissolve without a tablet!

Division Layouts

Dividend \div Divisor $=$ Quotient

Dividend / Divisor $=$ Quotient

Dividend $=$ Quotient
Divisor

Divisor	Quotient
	Dividend

Two Divided Negatives Make A Positive

When you divide two negative numbers, imagine rotating the first minus sign and placing it over the second minus sign to create a plus sign for the quotient.

Example: $-3 \div-1=3 \div+1=+3$

TRAP!

We've seen that 2 negatives make a positive in these situations:

$$
\begin{aligned}
& \text { Subtracting a negative } \\
& 3--1=3+1=+4
\end{aligned}
$$

Multiplying 2 negatives $-3 \times-1=3 \times+1=+3$
Dividing 2 negatives
$-3 \div-1=3 \div+1=+3$

But beware!

2 negatives don't always make a positive:
$-3+-1=-4$
$-3-1=-4$

Shrink or Grow?

If a dividend or divisor increases or decreases, what happens to the quotient? Use the mental manipulatives of a liquid-dividend and tablet-divisor to discover the relationships.

Dividend grows = Quotient grows	Dividend shrinks = Quotient shrinks
	Dividend
The dividend and quotient are proportional-they grow or shrink in the same direction. BrainAid: Similar endings dividend and quotient go similarly.	

Divisor grows = Quotient shrinks	Divisor shrinks = Quotient grows
Dividend $=1$ Divisor Quotient	Dividend
The divisor and quotient are inversely proportional-they grow or shrink in opposite directions. BrainAid: Different endings divisor and quotient go opposite.	

Your turn: Fill in the blanks with "grows" or "shrinks" and the new quotient.
For each of the following, if the original division is $12 / 3=4 \ldots$
...and the dividend grows to 15 , the quotient \qquad to \qquad .
...and the dividend shrinks to 9 , the quotient \qquad to \qquad .
...and the divisor grows to 4 , the quotient \qquad to \qquad .
...and the divisor shrinks to 2 , the quotient \qquad to \qquad .

Rainbow Division (aka Long Division)

Imagine that long division creates a rainbow with rain falling down.
No tricks here, just a more interesting way to visualize (and teach) long division.

Long Division. The divisor is outside; the dividend is inside, sheltered by a roof.	Estimate the number of times the divisor will dissolve into the first digit of the dividend, and place it on top of the roof	Multiply your estimate times the divisor, forming a rainbow to carry the product below the first digit of the dividend.
$2 \longdiv { 7 5 6 }$	$2 \longdiv { 3 }$	$2 \longdiv { 3 }$
Subtract to find the difference between the first digits.	Due to a leaky roof, the next dividend digit falls like rain to join the difference.	Estimate the number of times the divisor will dissolve into the combined difference.
$2 \longdiv { 3 }$	$\begin{aligned} & 3 \\ & 2 \longdiv { 7 5 6 } \\ & \underline{6}_{6} \stackrel{15}{15} \end{aligned}$	$\begin{gathered} 2 \longdiv { 7 5 } \\ \frac{75}{6} \\ 15 \end{gathered}$
Multiply to create a second rainbow band and product.	Subtract to find the next difference.	Rain down the next digit of the dividend.
$\begin{aligned} & \sqrt[37]{27} \\ & 2 \begin{array}{l} 756 \\ \boxed{6} v \\ 15 \\ 14 \end{array} \end{aligned}$	$\begin{aligned} & 1 \begin{array}{r} 37 \\ 2 \longdiv { 7 5 6 } \\ \underline{6} \\ 15 \\ \frac{14}{1} \end{array} \end{aligned}$	$\begin{aligned} & \frac{37}{27} \\ & 2 \begin{array}{l} 756 \\ 6 \\ 15 \\ 15 \\ 16 \\ 16 \end{array} \end{aligned}$
Put your estimate on the roof for the new difference.	Multiply to create a third rainbow band and product.	Subtract to find any possible remainder.
$\begin{array}{r} 378 \\ 2 \longdiv { 7 5 6 } \\ \begin{array}{r} 4 \\ 6 \\ 15 \\ 14 \\ 14 \end{array} \end{array}$		

Mental Division (MD)
 MD: Split and Halve

Tip: Mentally, it's easier to halve numbers highest-to-lowest by place values.
Trick: Split the dividend into numerical place values (100s, 10s, 1s), then start halving with the highest place value, so that the quotient is already in the order you'd think or say it.

Learn The Odd Halves

$3 \div 2=11 / 2$
$30 \div 2=15$
$5 \div 2=21 / 2$
$50 \div 2=25$
$7 \div 2=31 / 2$
$70 \div 2=35$
$9 \div 2=41 / 2$
$90 \div 2=45$

Tip: If you forget an odd half, split the odd number into an even number +1 , then halve the even number and halve 1 ; e.g., $9=8+1$. Half of 8 is 4 , half of 1 is $1 / 2$, so half of 9 is $4 \frac{1}{2}$.

Your turn: Mentally split and halve each number.
$56 \div 2$
$50 \div 2=$ \qquad
\qquad

Bonus Tip: To divide by 4, halve the number twice.

MD: Dissolving Multiples

Tip: Mentally, it's sometimes easier to split a dividend into multiples (see p. 34) of the divisor.
Trick: Split the dividend into numbers that are divisible by the divisor, then dissolve each number separately and join the partial quotients.

Think
$29=21+6+2$
3 into 21 is 7
3 into 6 is 2
3 into 2 is $2 / 3$
9 2/3

It really doesn't matter which multiples you choose. The results will be the same.
Think: $29=18+9+2 ; 3$ into 18 is $6 ; 3$ into 9 is $3 ; 3$ into 2 is $2 / 3 ; 92 / 3$

Your turn: Mentally split these dividends into multiples of their divisors, then dissolve.
$52 \div 3$
$67 \div 5$
$91 \div 6$
$52=30+21+1$
$67=50+$ $+2$
$91=60+30+$

$$
60 \div 6=
$$

\qquad
$30 \div 6=$ \qquad
\qquad $\div 6=$ \qquad
\qquad
$30 \div 3=$ \qquad $50 \div 5=$ \qquad
$21 \div 3=$ \qquad
$1 \div 3=$ \qquad
$\div 5=$ \qquad
$2 \div 5=$ \qquad

MM: Factor \& Dissolve

Tip: Mentally, it's sometimes easier to factor a divisor before dividing.
Trick: Factor the divisor, then divide with the smaller factors in turn.

$$
\mathbf{7 5} \div \mathbf{1 5}
$$

Think: $75 \div(3 \times 5)=75 \div 3=25 \div 5=5$
Your turn: Factor the divisor and divide.

$$
\begin{gathered}
\mathbf{5 4} \div \mathbf{1 8} \\
54 \div(\ldots \times 2)=54 \div 9=\ldots \div 2= \\
\mathbf{6 0 0} \div \mathbf{1 2} \\
600 \div(6 \times \ldots)=600 \div 6=\ldots \div 2=
\end{gathered}
$$

MD: Divide 5 = Double Tenth

Tip: Mentally, sometimes it's easier to convert a divisor of 5 into its equivalent $2 \times 1 / 10$.
Trick: To divide by 5, double the dividend (use MM: Split \& Double p.36), then divide by 10 (remove a zero or move the decimal point one left).

Your turn: Mentally divide by 5.

\qquad

MD: Divide 25 = Double Double Hundredth

Tip: Mentally, sometimes it's easier to convert a divisor of 25 into its equivalent $4 \times 1 / 100$.
Trick: To divide by 25, double the dividend twice (use MM: Split \& Double p. 36),
then divide by 100 (remove two zeros or move the decimal point two left).

Your turn: Mentally divide by 25 .
$2 \times 350=\quad \mathbf{3 5 0} \div \mathbf{2 5} \quad \times 2=\quad \div 100=$
$\mathbf{4 2 5} \div \mathbf{2 5}$
$2 \times \ldots \quad=\quad \times 2=\ldots \quad \div 100=$
$550 \div \mathbf{2 5}$
$2 \times \ldots \quad=\quad \times 2=\ldots \quad \div 100=$

Exponentiation Expands

Exponentiation $=$ Fast Multiplication
 Exponentiation is shorthand for repeated multiplication of the same number to produce a product.

$$
2^{3}=2 \times 2 \times 2=8
$$

Exponentiation Variations

Superscripted exponent

$$
2^{3}
$$

Caret [KAIR-et] symbol operator (Used in computer formulas. The ${ }^{\wedge}$ is above the 6 .)

$$
2^{\wedge} 3
$$

Expanding Bases: Unfolding Cards

Imagine a base as a card with the letter 'b' on it.
The "powerful" exponent "raises" the number of base cards in a set.
Expanded cards are "hinged" together by multiplication signs.

A base with exponent 0 equals 1.
Exception: 0^{0}

A base raised to the $1^{\text {st }}$ power equals the base.

A base raised to the $2^{\text {nd }}$ power is said to be squared.

A base raised to the $3^{\text {rd }}$ power is said to be cubed.

Positive Bases: Positively Positive

Positive bases raised to any power produce positive products.

8

Your turn: Expand the positive base, then multiply.
$3^{2}=3 \times 3=$ \qquad $4^{2}=\ldots \times$ \qquad
$5^{2}=\ldots \times$ \qquad
$3^{3}=\ldots \times \quad \times \quad 27$
$4^{3}=\ldots \times \quad=$
$5^{3}=\ldots \times \quad \times=$
\qquad

Negative Bases: Oddly Negative

Your turn: Expand the negative base, then multiply.
$(-3)^{2}=-3 \times-3=$ \qquad $(-4)^{2}={ }^{\times}=$ \qquad $(-5)^{2}={ }^{\times}=$
$(-3)^{3}=_^{\times} \times \ldots=-27$
$(-4)^{3}={ }_{C} \times{ }^{\times}=$ \qquad $(-5)^{3}={ }^{\times} \times \quad \times \quad=$
\qquad
Important: Negative bases must be enclosed within parentheses (see PEMDAS page 56).

Multiplying Exponents: Mad Bees / Merge Powers

Rule 1: To multiply exponents with equal bases: merge bases and add exponents. $\mathbf{b a s e}^{\text {exp }}=\mathbf{b}^{\mathbf{e}}$: Imagine that each base with its exponent is a bee.
Imagine that one bee bumps into a second bee, merging with it and making them both mad.
BrainAid: Multiply means add = Mad bees.

$$
b^{\mathrm{e}} \times \mathrm{b}^{\mathrm{E}}=\mathrm{b}^{\mathrm{e}+\mathrm{E}}
$$

Important: Only bees of the same breed (base) will merge into one bee.

Rule 2: To multiply exponents with different bases but equal exponents: multiply bases and merge exponents.
BrainAid: Bees of different breeds (bases) merge same powers.

TRAP!

You can not merge different bases with different exponents.

$$
2^{2} \times 3^{3} \neq(2 \times 3)^{2+3} \neq 6^{5}
$$

You can expand each base, then multiply.
$2^{2} \times 3^{3}=2 \times 2 \times 3 \times 3 \times 3=108$
Your turn: Multiply using Rule 1 or Rule 2 accordingly.
$2^{3} \times 2^{4}=$
$3^{5} \times 3^{3}=$ \qquad $2^{3} \times 3^{3}=$ \qquad $4^{2} \times 5^{2}=$
\qquad

Raising a Base: Ram Bee / Ram Bees

Rule 1: To raise a base ${ }^{\text {exp }}$ to an external power, multiply the exponents. Imagine a magnify glass using its power to ram the exponents together.

BrainAid: Raise means multiply = Ram bee.

$$
\left(b^{b^{\circ}}\right)^{\hat{E}}=b^{e^{\mathrm{eE}}}
$$

Rule 2: To raise unlike bases to an external power, distribute the external exponent over the inner ones. BrainAid: Ram multiple bees.

$$
\left(2^{2} 3^{5}\right)^{2}=2^{2 \times 2} 3^{3 \times 2}=2^{4} 3^{6}
$$

TRAP!

$$
\left(2^{2}+3^{3}\right)^{2}=\left(2^{2}+3^{3}\right)\left(2^{2}+3^{3}\right)
$$

Your turn: Raise the base/s by multiplying the exponents.
$\left(2^{3}\right)^{4}=$
$\left(3^{3}\right)^{3}=$ \qquad
$\left(4^{4} 5^{3}\right)^{2}=$ \qquad

Negative Exponents: Screening Bees

Inverting the base ${ }^{\text {exp }}$ reverses the sign of the exponent.
Using vertical division, inverting means to move from top to bottom or bottom to top.
BrainAid: Imagine the ' b ' in \underline{b} ase is the body of a bee, and the ' e ' in exponent is the head of a bee. Imagine that a bee with a negative exponent has an extra antenna at the back of its head.

BrainAid: When a negative-exponent bee flies down or up through a screen (division line), its extra antenna gets caught and breaks off; i.e., the negative exponent becomes positive.

BrainAid: When a positive-exponent bee flies down or up through a screen (division line), it gains the extra antenna left by a negative-exponent bee; i.e., the positive exponent becomes negative.

Your turn: Invert the base and reverse the exponent sign.

Dividing Bases: Screening Mad Bees

To divide bases that are alike, invert one base, then multiply.

BrainAid: Imagine two bees separated by a screen. As one flies up or down though the screen, it gains or loses an antenna before it joins the other. Then they're multiplied using merge and $\underline{\text { add }}=\mathrm{mad}$.

Flies up / Gains antenna

$$
\frac{\mathrm{b}^{\mathrm{e}} \not \mathrm{~b}^{\mathrm{e}}}{}=\mathrm{b}^{\mathrm{e}} \times \mathrm{b}^{-\mathrm{e}}=\mathrm{b}^{\mathrm{e}+\mathrm{e}}
$$

Important: Only bees of the same breed (base) will merge into one bee.

Flies up / Loses antenna
$\frac{b^{e}}{b^{-\mathrm{e}}}=b^{\mathrm{e}} \times b^{\mathrm{e}}=b^{\mathrm{e}+\mathrm{e}}$

Flies down / Loses antenna
$\frac{b^{-\mathrm{e}}}{b^{\mathrm{e}}}=\frac{1}{b^{\mathrm{e}} \times b^{\mathrm{e}}}=\frac{1}{b^{\mathrm{e}+\mathrm{e}}}$

Flies up / Gains antenna
$\frac{b^{-\mathrm{e}}}{\mathrm{b}^{\mathrm{e}}}=\mathrm{b}^{-\mathrm{e}} \times \mathrm{b}^{-\mathrm{e}}=\mathrm{b}^{-\mathrm{e}+-\mathrm{e}}$

Flies down / Gains antenna
$\frac{b^{e}}{b^{-\mathrm{e}}}=\frac{1}{b^{-\mathrm{e}} \times b^{-\mathrm{e}}}=\frac{1}{b^{-\mathrm{e}+-\mathrm{e}}}$

Your turn: Divide by inverting the indicated base, then multiplying.

$$
\begin{array}{lll}
\frac{2^{5}}{2^{3}}= & \frac{2^{5}}{2^{-3}}= & \frac{2^{-5} \not 2^{3}}{}= \\
\frac{2^{5}}{2^{3}}=\frac{1}{2} & \frac{2^{5}}{2^{-3}}=\frac{1}{2} & \frac{2^{-5}}{2^{3}}=\frac{1}{2}
\end{array}
$$

PEMDAS Prioritizes

Priority Of Operators

When a math problem includes multiple operations, for example, addition and division and subtraction, how do you know which one to start with? It might seem reasonable to start on the left and proceed to the right, but this isn't always the case.

To avoid confusion mathematicians have assigned priorities to each operator. That is, certain operations must be done before others, no matter where they appear in the problem. If you don't follow these priorities precisely, you'll get the wrong answer.

In order, the priorities are: Parentheses, Exponentiation, Multiplication, Division, Addition, $\underline{\text { Subtraction. Two traditional }}$ memory hints are commonly used to teach these priorities:

- Acronym: PEMDAS [PEM-dass]
- Acrostic: Please Excuse My Dear Aunt Sally

Let's examine each operation in order.

Parentheses: Open Me First!

An operation inside a set of parentheses has priority over an operation outside.

Incorrect Priority	Correct Priority
$5-(2+1)$	$5-(2+1)$

BrainAid: Imagine parentheses as a package which says, "Open me first!"

$$
5-(2+-1)
$$

If a problem has multiple sets of (parentheses) or [brackets] or \{braces\}, work from the inside out. (third (second (first))) or $\{$ third [second (first)] \}
Example: $2(3 \times(4+5))=2(3 \times 9)=2(27)=54$

Exponentiation: A Higher Power

Raising a number to a power has priority over all operations outside of parentheses.

Incorrect Priority	Correct Priority
2×3^{2}	2×3^{2}
$\underbrace{2}$	$2 \times{ }^{2}$
36	$\mathbf{1 8}$

BrainAid: Imagine lines of force emanating from the 'higher power' exponent down towards its base. The exponent exerts a powerful influence, putting pressure on the base to expand before it gets involved with any other operations.

Exponentiation Negation Controversy

Negation reverses the sign of a number.
Essentially, it's like subtraction but with no minuend.
Example: 2-1 is a subtraction; -1 is a negation, as is -1 .
Regarding priority order, negation is treated like subtraction.
THE PROBLEM
Computer spreadsheet programs and some calculators handle exponentiation and negation in nonstandard ways.

$$
\begin{aligned}
& \text { MATHEMATICALLY } \\
& -2^{2}=-(2 \times 2)=-4
\end{aligned}
$$

SPREADSHEETS / SOME CALCULATORS

$$
-2^{2}=(-2) \times(-2)=+4
$$

THE SOLUTION
Before creating formulas that use exponents, be sure to test how your computer/calculator handles them. If possible, use parentheses to force the priority you need.

$$
\begin{gathered}
-\left(2^{2}\right)=-(2 \times 2)=-4 \\
(-2)^{2}=(-2) \times(-2)=+4
\end{gathered}
$$

Multiplication or Division: Fast Runners

These operators have left-to-right priority; i.e., first come, first done.

Incorrect Priority	Correct Priority
$6 \div 3 \times 2$	$6 \div 3 \times 2$
$6 \div 6$	

BrainAid: Imagine that multiplication (aka fast addition) and division (aka fast subtraction) are runners in a race. Whoever is closest to the finish line (on the left) wins priority over the other.

Fast Runners

Addition or Subtraction: Slow Walkers

These operators have the lowest priority and are also done in left-to-right order.

Incorrect Priority	Correct Priority
$5-1+2$	$5-1+2$
2	

BrainAid: Imagine that the addition and subtraction operators can only walk instead of run the race. Whoever is closest to the finish line has priority over the other. Of course, any multiplication or division runners will finish ahead of the walkers and have higher priority.

Multiple Operator Problems: Give me a Number, please!

When you encounter multiple operator problems, follow these steps.

You encounter a problem with four operators.

$$
12-5 \times(2+4) \div 3
$$

Using PEMDAS rules, assign priority numbers above each operator.
This will ensure you follow the correct order of operations.
Circle each priority number, so you don't confuse it with a number being operated on.
(4) (2)
(1) (3)
$12-5 \times(2+4) \div 3$

Draw thin vertical guidelines between each number and operator.
This will keep things organized and ensure you don't overlook a number or operator.

Calculate with the first priority operator.
Place the results directly beneath the operator and draw arrows to the result.
Cross out the first priority number.

Carry down and rewrite the remaining numbers and operators in their respective columns.

(continued on next page)

Repeat the process for each remaining operator.
Cross out each priority number after you perform its operation (not before).
Circle the final answer.

Algorithms

This procedure may seem cumbersome. But it's very easy to make errors with multi-operator problems. In general, it's a good idea to follow a set procedure, aka algorithm [AL-goh-RI-thhum], when working any math
problems. It's too easy to have your mind wander or get distracted, especially on longer, more involved problems. An algorithm will help to keep you on track until you reach the correct solution. It can also reduce the mental effort required if you have a pattern to follow.

Twice Done is Well Done

Benjamin Franklin may not have been thinking of math problems when he coined this phrase, but it certainly applies. If you have time, always try to solve a math problem twice and in two different ways. If you get the same answer both times, you've likely done it correctly. Doing a problem a second time, and in a different way if possible, increases the likelihood of uncovering any mistakes in your logic or calculations.

Your turn: Using PEMDAS rules, assign priority numbers and solve in order.

BrainDrain \#3

	1					6							
		3											
	2												
										7			
												8	
					5								
	4												

Fill in the
Across
1. To bases, add their exponents.
2. Inverting a base changes the sign of its
4. If a divisor shrinks, the quotient

4. If a divisor shrinks, the quotient \qquad .
5. \qquad reverses the sign of a number.

Down

3. Exponentiation \qquad the base.
4. _ have the highest priority.
5. If a dividend shrinks, the quotient \qquad .
6. $3 / 3=1$ demonstrates the Division Property of \qquad .

True/False

Write T or F in the blanks.
1 \qquad The distributive property does not hold for division.

2 \qquad Two negatives always make a positive.

3 \qquad Only equal bases can be merged when multiplied.

4 \qquad Negation and subtraction are the same thing.

5 \qquad To raise a base to a power, add the exponents.

Must I Always Use Mental Manipulatives?

As you practice mental math techniques in your daily life, you'll get better at solving problems directly with symbols, without picturing piles, holes, magnifying glasses, tablets, buckets, cards, bees, or other mental manipulatives. This is okay, because the goal is to get the correct answer by whatever means. However, when you're distracted and not able to fully focus, it often helps to slow down and visualize mental manipulatives to help you concentrate.

Answer Key

Addition Attaches

Page 8: Larger Pile (3+1=4)
Top Row: 5, 7, 8; Bottom Row: 9, 6, 10
Page 9: Larger Hole (-3+-1 = 4)
Top Row: $-5,-7,-8$; Bottom Row: $-9,-6,-10$
Page 10: Smaller Pile (3+-1=2)
Top Row: 1, 3, 4; Bottom Row: 5, 2, 8
Page 11: Smaller Hole (-3 + 1 = -2)
Top Row: $-1,-3,-4$; Bottom Row: $-5,-2,-8$

Page 14: MA: Borrow

Top Row: 7 | 50, 3, 53; Bottom Row: 40, $41 \mid 5$, 80, 85. More Borrowing: Top Row: 143, 185, 1046; Bottom Row: 198, 170, 1315

Page 15: MA: Find 10s
Top: 9, 19; Middle: 10, 10, 20; Bottom: 10, 5, 15

Page 15: MA: Stack Signs

Left:-6, 7, -2, Center: 2, -5, 8, -6, 2;
Right: 2, 1, -1, 6,-5, 1

Page 16: MA: Split \& Join

Left Column: 80, 6; $86 \mid 50,90,3,5,95$; Right
Column: 70, 15, 5, $85 \mid 90,70,6,7,160,10,173$

BrainDrain \#1

Page 17

Crossword Puzzle: Across: 1. commutative, 3. highest, 5. opposite, 7. operator, 8. Identity; Down: 2. zero, 4. more, 6. symbol, 9. negative True/False: 1T, 2F (whole numbers have no negatives), $3 \mathrm{~T}, 4 \mathrm{~T}, 5 \mathrm{~F}($ zero $=$ Identity $) .6 \mathrm{~F}$ (ordinal)

Subtraction Steals

Page 18: Smaller Pile (3-1=2)
Top Row: 1, 3, 3; Bottom Row: 5, 6, 3
Page 19: Smaller Hole (-3-1 = -2)
Top Row: $-1,-3,-4$; Bottom Row: $-3,-6,-2$
Page 20: Larger Pile (3-1=4)
Top Row: 7, 6, 9; Bottom Row: 11, 12, 15
Page 21: Larger Hole (-3-1 = -4)
Top Row: -6, $-7,-8$; Bottom Row: $-10,-12,-14$
Page 23: MS: Bump
Bump Up: Top Row: 10, | 43, 13; Bottom Row:
77, 40, 37, | 76, 40, 36 (bump up 2)

Bump Down: Top Row: 10, |49, 19; Bottom Row:
69, 40, $29 \mid 68,40,28$ (bump down 2)
Page 24: MS: Split \& Steal
Left Column: 40, $2 \mid 40,20,8,5,23$;
Right Column: 40, $-2,38 \mid 40,20,8,9,19$
Page 25: MS: Dig Pile
Left: 20, 4, 8, 16; Right: 100, 0, 50, 60, 90, 5, 85
Page 26: MS: Fill Up
Top Row: 63, 142, 68;
Bottom Row: 626, 1418, 671
Page 27: MS: Span \& Join
Top Row: 50, 76; Bottom Row: 75, 30
Century Span: 2000, 64, 2, 66

Multiplication Magnifies

Page 28: Larger Pile ($2 \times 3=6$)
Top Row: 8, 9, 12; Bottom Row: 15, 14, 9
Page 28: Larger Pile ($\mathbf{- 2 \times - 3 = 6 \text {) }) ~}$
Top Row: 10, 12, 8; Bottom Row: 20, 14, 9
Page 29: Larger Hole ($2 \times-3=-6$)
Top Row: $-8,-6,-12$; Bottom Row: $-15,-14,-9$

Top Row: -10, -12, -6 ; Bottom Row: -20, $-16,-9$
Page 31: Distributive Property Multiplication
Top Row: 6b | 24a, 20; Bottom Row: 4 | 3a, 5b
Page 32: Multiplicative Inverse
Top Row: $1 / 4,-1 / 2,5$; Bottom Row: $1 / 5,-1 / 7,6 / 5$

Page 34: Multiple Table

Top Row: 6, 10; Middle Row: 6, 12, 18;
Bottom Row: 12, 20

Page 35: Factoring Tricks

4 Yes, because the last two digits are a multiple of 4 ($80 / 4=20$).
5 Yes, because 5580 ends in 0 .
6 Yes, because 5580 fits the tricks for both $2 \& 3$
(i.e., even and a multiple of 3).

9 Yes, because $5+5+8+0=18$, which is a multiple of $9(18 / 9=2)$.

Page 35: Factor Trees

$3 \times 5|2 \times 2 \times 2 \times 2| 2 \times 3 \times 3$
Page 36: MM: Split \& Double
Left: 60, 8, 68; Center: 40, 80, 7, 14, 94;
Right: 70, 140, 8, 16, 156

Page 36: MM: Split \& Magnify
Left: 90, 12, 102; Center: 40, 240, 7, 42, 282;
Right: 60, 420, 5, 35, 455
Page 37: MM: Factor \& Magnify Left: 2, 30, 180; Right: 8, 90, 720

Page 37: MM: Multiply 5 = Half Ten
Top Row: 12, $120 \mid 68,34,340$
Bottom Row: 140, 70, $700 \mid 244,122,1220$
Page 37: MM: Multiply 25 = Quarter Hundred Top Row: 6, $600 \mid 36,9,900$
Bottom Row: 88, 22, $2200 \mid 320,80,8000$
Page 38: MM: 11 Split \& Insert
Left: 6 (6+3) 3, 693;
Right: 7 (7+9) 9, 7 (16) 9, 869
Page 38: MM: 5-End Squared
Left: 1225; Right: 2025

BrainDrain \#2

Page 39
Crossword Puzzle: Across: 1. multiplier, 2.
distributive, 5. one, 6. noun; Down: 3. product, 4. associative, 7. zero, 8. prime, 9. reciprocal
True/False: 1F, 2F, 3F, 4T, 5F (57=3×19)

Division Dissolves

Page 40: Smaller Pile (4 $\div \mathbf{2}=\mathbf{2}$)
Top Row: 2, 3, 5; Bottom Row: 4, 2, 3
Page 40: Smaller Pile (-4 $\div \mathbf{- 2}=\mathbf{2}$)
Top Row: 2, 3, 5; Bottom Row: 4, 2, 3
Page 41: Smaller Hole (4 $\div \mathbf{- 2}=2$)
Top Row: $-2,-3,-5$; Bottom Row: $-4,-2,-3$
Page 41: Smaller Hole (-4 $\div \mathbf{2}=\mathbf{2}$)
Top Row: -2, $-3,-5$; Bottom Row: $-4,-2,-3$
Page 43: Distributive Property of Division
Left: 2, 3c; Center: 2a, 3b; Right: 3a, 5b, 7c

Page 45: Shrink or Grow?

From Top: grows 5, shrinks 3, shrinks 3, grows 6
Page 47: MD: Split \& Halve
Left: 25, 3; Center: 60, 2, 7, 2, 33½;
Right: 90, 2, 45, 3, 2, 1½, 46½

Page 47: MD: Dissolving Multiples

Left: 10, 7, 1/3, 171/3; Center: 15, 10, 15, 3, 2/5, 132/5; Right: 1, 10, 5, 1, 1/6, 151/6

Page 49: MD: Divide 5 = Double Tenth
Top Row: 240, $24 \mid 230,460,46$
Bottom Row: 2, 650, 10, $65 \mid 2,440,880,10,88$

Page 49: MD: Divide 25 = Double Double Hundredth

Top: 700, 1400, 14; Center: 425, 850, 1700, 17;
Bottom: 550, 1100, 2200, 22

Exponentiation Expands

Page 51: Positive Bases

Top: $9|4,4,16| 5,5,25$
Bottom: 3, 3, 3|4, 4, 4, $64 \mid 5,5,5,125$

Page 51: Negative Bases

Top: $9|-4,-4,16|-5,-5,25$
Bottom: -3, -3, -3|-4, -4, -4, -64|-5, -5, -5, -125

Page 52: Multiplying Exponents

$2^{7}, 3^{8}, 6^{3}, 20^{2}$

Page 53: Raising a Base

$2^{12}, 3^{9}, 3^{6} 4^{4}, 4^{8} 5^{6}$

Page 54: Negative Exponents

$1 / 2^{3}, 2^{3}, 1 / 4^{-5}, 4^{-5}$

Page 55: Dividing Bases

Top Row: $2^{2}, 2^{8}, 2^{-8}$;
Bottom Row: $1 / 2^{-2}, 1 / 2^{-8}, 1 / 2^{8}$

PEMDAS Prioritizes

Page 61
Top Row: 2,$1 ; 5+6 ; 11 \mid 2,1 ; 12-2 ; 10$
Middle Row: 2, 1, 3; 12-12+2; $0+2 ; 2 \mid 3,1,2 ; 12-$
3×2; 12-6; 6
Bottom Row: 3, 2, 1, 4; 8+4 $\div 4-1 ; 8+1-1 ; 9-1 ; 8 \mid$
$3,1,2,4,5 ; 2 \times 6^{2} \div 8-4 ; 2 \times 36 \div 8-4 ; 72 \div 8-4 ; 9-4 ; 5$

BrainDrain \#3

Page 62

Crossword Puzzle: Across: 1. multiply, 2. exponent, 4. grows, 5. negation; Down: 3. expands, 6 . parentheses, 7 . shrinks, 8. one True/False: 1F, 2F, 3T, 4F, 5F

Now try my next two books:

Fraction Fun Algebra Antics

Page 48: MM: Factor \& Dissolve Top: 9, 6, 3; Bottom: 2, 100, 50

[^0]: * See Pronunciation Guide on page 4.

