

Algebra: Science of Equations

Algebra is the branch of mathematics that uses equations to discover unknown values.
All problems that seek an answer can be thought of as algebra.

```
1 st Grade Algebra
    1+1 = ?
```


Al Jabr

Algebra [AL-jeh-bruh] comes from Al Jabr, which is Arabic for "bringing together." Algebra brings together known and unknown values.

$7^{\text {th }}$ Grade Algebra
 $1+1=\mathrm{x}$

Algebra Anxiety
Algebra's use of simple letters, which seem so friendly in words, creates needless confusion and anxiety in many people.

Algebra Operators

Multiplication
Algebra does not use the standard
multiplication symbol \times because it
looks too much like the letter x .
Instead it uses a raised dot
$\mathbf{2} \cdot \mathbf{3}$
or parentheses
$\mathbf{2 (3) , (2) (\mathbf { 3 })}$
or places items together
$\mathbf{2 a}, \mathbf{x y}$

Division

Algebra does not use the standard division sign \div or the long division symbol \ulcorner.

Instead it uses fraction bars

$$
\begin{gathered}
\frac{\mathbf{a}}{\mathbf{b}} \\
\text { or } \\
\mathbf{a} / \mathbf{b}
\end{gathered}
$$

Algebra Terminology

Use the following analogies to compare what you already know, English, with what you are learning, Algebra.

ENGLISH		ALGEBRA	
Word	John	Term	1
Phrase	John and Mary	Expression	$1+1$
Sentence	John and Mary are together.	Equation	$1+1=2$

Term: CV $^{\mathrm{E}}{ }^{\mathrm{MD}}$

A term is a mathematical word that represents a quantity or value.

As words are built from various letters, terms are built from various components.

Constants

A term can contain constants [KAWN-stunts], which are numbers that do not vary; e.g., $\mathbf{1 0 0}$ is always the number of cents in a dollar.

Variables

A term can contain variables [VAIR-ee-uh-bulz], which are letters that represent numbers that can vary; e.g., \mathbf{N} is the number of cents in your penny box, which varies each time you add or take pennies.

Exponents

A term can contain exponents [EX-poh-nuntz], which are powers assigned to constants or variables, e.g., $\operatorname{ind}_{\substack{\text { b }}}^{\frac{e}{v}} 2^{3}$ or x^{4}

Multiplication

A term can contain several multiplied constants, variables, and exponents; e.g., $3 x^{2} y^{4}$
is a single term!

Division

A term can contain several divided constants, variables, and exponents; e.g., $5 z^{2} / 2$
is a single term!

Let Dr. Term help you remember the five items used to build terms, and two that aren't!

Terms Have Power!

In life, a human family's power is based on how much money or political influence it has. In algebra, a term family's power is based on its exponent.

The higher the exponent, the higher the power.

${ }^{\dagger}$ Zero Power = 1

You might expect that something raised to the zero power would equal zero, but it actually equals 1 , egg.,

$$
\begin{gathered}
1^{0}=1 \\
20^{0}=1 \\
500^{0}=1 \\
\mathbf{x}^{0}=1
\end{gathered}
$$

Therefore, constants can omit x^{0}, e.g.,

$$
2 x^{0}=2(1)=2
$$

Why it Works
Anything divided by itself equals 1 :

$$
\frac{x^{1}}{x^{1}}=1
$$

But by the rules of exponents:

$$
\frac{\mathbf{x}^{1}}{\mathbf{x}^{1}}=\mathbf{x}^{1-1}=x^{0}
$$

Therefore:
$\mathbf{x}^{0}=1$
(Note: $\mathrm{x} \neq 0$)

Your turn!

Draw arrows to match family and term.

Constant	t^{2}
Linear	y^{3}
Quadratic	r^{1} or r
Cubic	$4 \mathrm{z}^{0}$ or 4

Coefficient: Constant Coworker

Coefficients [coh-ee-FISH-untz] are constants combined with variables. Coefficients are typically numbers. Coefficients can also be represented by letters.

Variables without

 Coefficients?If a variable appears without a coefficient, the coefficient is 1 , which does not have to be written out, e.g.,

$$
\begin{aligned}
1 \mathrm{x}^{2} & =\mathrm{x}^{2} \\
1 \mathrm{x} & =\mathrm{x}
\end{aligned}
$$

Your turn!

Circle the three coefficients.

$$
x^{2}+d x+7
$$

What is the coefficient of x^{2} ?

What is the power of x ?

What is the variable of 7 ?

A variable is a letter used as a placeholder for a number that can vary.

To reduce any anxiety you might have about using letters in math, imagine that a variable is a box.

Imagine variables as
magic one-size-fits-
all boxes that can
hold any number,
positive or negative,
large or small.
Like a genie fitting
into a bottle, even a
very large number
can be put into a
box without
changing its size.

. magic one-size-fitsall boxes that can hold any number, positive or negative, large or small.
.

Unknowns

Variables (aka 'literal' or 'letter' numbers) are called unknowns when they represent numbers we don't yet know.

Your turn!

Learn to draw boxes by tracing over these.
Start with the face, then the top, then the open lid.

Expression: Poly Mo-Bi-Tri

An expression is a mathematical phrase built from a term or terms.

Polynomial Expressions

Polynomial [paw-lee-NOH-mee-ul]
Poly means many.
Nomial means name, or in this case term.
Expressions are classified by how many terms they contain.

Type of Expression	\# of Terms	Example
Monomial [maw-NOH-mee-ul] (mono means one)	$\mathbf{1}$	$\mathbf{a x}^{2}$
Binomial [bii-NOH-mee-ul] (bi means two)	$\mathbf{2}$	$\mathbf{a x}^{2}+\mathbf{b x}$
Trinomial [trii-NOH-mee-ul] (tri means three)	$\mathbf{3}$	$\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c}$

Your turn! Draw matching arrows.	
Monomial	$3 \mathrm{v}+\mathrm{w}$
Binomial	$4 \mathrm{u}^{5}$
Trinomial	$\mathrm{z}^{-4}+\mathrm{q}^{1 / 3}$
Not Polynomial	$\mathrm{r}+\mathrm{s}-\mathrm{t}$

Evaluating Expressions: Feeding Variables

Evaluate means to substitute (replace) a given value for the variable, then calculate the result.

Your turn!

Draw an open, hungry box around the variable in the expression. Draw an arrow from the value given in the equation to the box's mouth. Calculate the result.

$$
\text { If } x=3 \text {, evaluate } \mathbf{2} x+\mathbf{4}
$$

Combining Like Terms

Like Terms

Like (aka similar) terms have the same variable/s raised to the same exponent/s, e.g.,
$\mathbf{2 x}^{3}$ and $\mathbf{4} \mathbf{x}^{3}$ are like terms.
$\mathbf{3 z}^{2} \mathbf{y}^{4}$ and $\mathbf{5 z} \mathbf{z}^{2} \mathbf{y}^{4}$ are like terms.

Combining Like Terms

Like terms can be made into a single term by combining coefficients, e.g.,

$$
2 x^{3}+4 x^{3}=6 x^{3}
$$

(Think 2 items +4 items $=6$ items)

Why it Works

 Distributive Property Extract common factor x^{3} : $2 x^{3}+4 x^{3}=x^{3}(2+4)=x^{3}(6)$Commutative Property

$$
x^{3}(6)=6 x^{3}
$$

BrainAid
Imagine combining terms' individual positive or negative personalities (coefficients) into a "family" personality.

Individual (coefficients)

Your turn!
Draw arrows to match like terms. Combine coefficients in the center boxes.

Simplifying Expressions: Family Reunion

To simplify an expression, combine like terms.

BrainAid: Imagine terms have boarded a train for their family reunions.

Terms have positive (+) or negative (-) personalities.

The most powerful terms have expensive tickets, so they move to the front of the train and have their reunion in a 1st-class boxcar.

The less powerful terms have cheaper tickets, so they move to and reunite in a 2 nd-class boxcar.

Simplify $3 x^{2}+4 x-1-2 x^{2}-x-3$

- Draw one large rectangle (train) around the entire expression.
- Draw vertical lines to separate each term into its own box (car). Include the + or - sign with each term so you don't overlook it.
- Starting with the highest power terms, draw connecting lines below and to the left for each family. Add or subtract coefficients to combine each family into a single term.

Your turn!

Draw a rectangle around the expression, then add vertical lines to put each term with its + or - sign in a separate box. Simplify by combining like terms (most powerful on the left).

$$
3 x-2+x^{2}-5 x-4 x^{2}+2
$$

Equation: Balancing Act

An equation is a mathematical sentence that equates two expressions.

An equation is like a balance scale that must have equal weight (expressions) on both sides to be balanced.

Start with an empty scale in a balanced condition (indicated by the $=$ sign).	Add a weight to one side to unbalance the scale (indicated by the \neq sign).	Add an equal weight to the other side to rebalance the scale (indicated by the $=$ sign).

Golden Rule of Equations

Whatever you do to one side, do to the other side.

BrainAid

The Golden Rule of Life says: "Do unto others as you would have them do unto you."
The Golden Rule of Equations says:
"Whatever you do to one side, do to the other side."

PROPERTY OF EQUALITY

If
$\mathbf{a}=\mathbf{b}$
then

$$
a+c=b+c
$$

If you add \mathbf{c} to one side, add \mathbf{c} to the other side.

$$
\mathbf{a}-\mathbf{c}=\mathbf{b}-\mathbf{c}
$$

If you subtract \mathbf{c} from one side, subtract \mathbf{c} from the other side.

$$
\mathrm{ac}=\mathrm{bc}
$$

If you multiply one side by \mathbf{c}, multiply the other side by \mathbf{c}.

$$
\mathbf{a} / \mathbf{c}=\mathbf{b} / \mathbf{c}
$$

If you divide one side by \mathbf{c}, divide the other side by \mathbf{c}.

Your turn!

Draw matching arrows.

Expression	$\mathrm{x}=3$
Equation	$2 \mathrm{x}+4$

What is the one thing that an equation has that an expression never will?

Your turn!

Given $\mathbf{a}=\mathbf{b}$, apply the Golden Rule by putting numbers in the empty boxes.
$a \cdot 4=b \cdot$ \square
$\mathbf{a}-\square=\mathbf{b}-\mathbf{3}$
a/ \square $=\mathrm{b} / 5$

Balancing Equations

Apply the Golden Rule of Equations to keep equations balanced.

\qquad

What's in the Box?

Combining the ideas of a variable being a box and an equation being a scale, the goal of algebra is to figure out what's inside the box-without opening it!

Get the Box Alone!
If the variable box has anything with it on the scale, you must get it alone to determine what's inside.

If the box has
other items
with it on the
scale, clear
everything
away from the
box until it's
alone.
Per the Golden
Rule, clear
equal amounts
from the
opposite side to
balance the
scale.

Algebra Arithmetic: Doing the Math

Algebra arithmetic proceeds vertically, line-by-line, down the page. These tips can help.

Rewrite Original

Always rewrite and evaluate the original equation, not a derived version which might contain introduced errors.

Feed Me!
Draw an open, hungry box around the variable. al

Clearly Opposite!

To get the variable box alone, perform the opposite operation to clear items away from it.

Clearly Opposite uses the Inverse Property to cancel or dissolve items.
Additive Inverse: $a+-a=0 \quad$ Multiplicative Inverse: $a(1 / a)=1$

$$
x+1=4
$$

If a number is added to the box, subtract it!

$$
\left.\begin{aligned}
& \hat{x}+1=4 \\
& \underline{-1} \\
& x=3
\end{aligned} \right\rvert\, \begin{aligned}
&-1 \\
& 3+1=4 \\
& 4=4 \sqrt{x}+1
\end{aligned}
$$

$$
x-1=3
$$

If a number is subtracted from the box, add it!

$$
2 x=6
$$

If a number multiplies the box, divide by it!

Division Dash Dissolves
Draw a dashed line through items to indicate they dissolve to 1 (instead of cancel to 0).

Use Parentheses

to hold a multiplied value.

Your turn!

Subtract from both sides. Solve and check.

$$
x+1=-4 \quad x+1=-4
$$

Your turn!

Add to both sides. Solve and check.

$$
x-1=-3 \quad x-1=-3
$$

Your turn!

Divide both sides. Solve and check.

$$
-2 x=-6 \quad-2 x=-6
$$

$$
\frac{x}{3}=2
$$

If a number divides the box, multiply by it!

$$
\begin{aligned}
3\left(\frac{(\underline{x}}{3}\right)=(2)(3) \\
x=6
\end{aligned} \begin{aligned}
& \frac{\square}{\frac{6}{3}}=2 \\
& \frac{6}{3} \\
& =2 \\
& 2
\end{aligned}
$$

Eventually, you might want to stop drawing boxes and plugs, but it helps to retrace your work if you draw circles, lines with arrows, and check marks.

Your turn!

Multiply both sides. Solve and check.

$$
\frac{x}{2}=5 \quad \frac{x}{2}=5
$$

Clear A/S M/D!

If the box is surrounded by more than one operator $(+-\times \div)$, it's not always clear what to clear away first. In fact, it's as clear as mud, which of course is not clear at all! Clear $A / S M / D$ will remind you to clear items away in reverse PEMDAS (aka SADMEP) order, i.e.,

$1^{\text {st }}$: Clear Addition or $\underline{\text { Subtraction }}(\mathrm{A} / \mathrm{S})$. $\mathbf{2}^{\text {nd: }}$: Clear Multiplication or Division (M/D).

Clear A/S M/D
Clear operators in this order: Addition Subtraction Multiplication Division

PEMDAS

Check answers
this order: this order: Parentheses, Exponentiation Multiplication or Division Addition or Subtraction $2 x+1=7$

Clear Addition,
Then $\underline{\text { Multiplication. }}$

Multiply,
Then Add.

Clear A/S M/D
Clear operators in this order:
Addition
Subtraction
Multiplication
Division

PEMDAS

Check answers in this order:
Parentheses, Exponentiation Multiplication or Division Addition or Subtraction

Clear Addition, then Multiplication.

$$
3 x+1=-5 \quad 3 x+1=-5
$$

$$
x / 4-2=0
$$

Clear Subtraction,
Divide, Then Division.

Then Subtract.

Throw M/D!

Sometimes Clear $A / S M / D$ is not the easiest way to proceed.
If an equation contains fractions, or coefficients with common factors, it may be simpler to Throw M/D (Multiply/Divide) at it before clearing Addition/Subtraction.

Throw M/ to Clear Denominators

A fractionless equation is easier to work with. To clear denominators from an equation, multiply each term by the LCM (Least Common Multiple) of all denominators.

$$
\frac{x}{2}-\frac{1}{3}=\frac{1}{6}
$$

To eliminate fractions, multiply each term by the LCM of all denominators.

$$
\begin{aligned}
& 3\left(\frac{x}{2}-\frac{1}{6}\right) \\
& 3 x-2=\left(\frac{1}{6}\right)(6) \\
& 3 x-2
\end{aligned}
$$

Dissolve \& Distribute

Dissolve each denominator into the
LCM first, then distribute the results using the Distributive Property.

Your turn!

Multiply to clear denominators.

$$
\frac{-3 x}{4}+\frac{1}{2}=\frac{1}{3}
$$

Throw /D to Reduce Coefficients

Smaller coefficients are easier to work with. To reduce coefficients, divide each term by the GCF (Greatest Common Factor) of all coefficients.

$$
12 x+24=36
$$

To reduce coefficients, divide each term by the GCF of all coefficients.

Your turn!
Divide to reduce coefficients.
$-15 x-18=24$

Taking Sides

If variables and constants are on opposite sides of the equal sign, move variables to one side and constants to the other.

$$
3 x+2=4-2 x
$$

Move variables to one side and constants to the other side.

$$
\begin{gathered}
3 x+2=4-2 y \\
+2 x \\
\hline 5 x+2=4 \\
+\frac{+2 x}{} \\
5 x \quad=\frac{-2}{2}
\end{gathered}
$$

Your turn!

Move variables and constants to opposite sides.

$$
7-4 x=-6 x+5
$$

Which Side?

It's traditional to move variables to the left side,
but not mandatory.
For example, $\mathbf{x}=\mathbf{1}$ is the same as $\mathbf{1}=\mathbf{x}$.
It's generally preferable to move variables to the side that results in a positive coefficient, e.g.,

$$
\frac{x}{-x}+1=2 x
$$

Saving Steps

You can save time by moving variables and constants in one step.

$$
3 x+2=4-2 x
$$

Move variables and constants
in one step!

$$
\begin{array}{r}
3 x+2=4-2 y \\
+2 x-2 \underline{-2}+2 x \\
5 x=2
\end{array}
$$

Your turn!
Move variables and constants in one step.

$$
7-4 x=-6 x+5
$$

Solving Equations: WAC Golden Plug!

Use these fun steps to solve algebra equations!

WHAT?

Al Jabr seeks the unknown contents of a treasure box that is covered in mud and sealed with a golden plug. It is balanced on a scale that has gold bars, also covered with mud, on the opposite side. The trick is, Al Jabr must find out what's in the box without opening it! In an equation, you'll use the same steps to find the contents of a variable "box."

ALONE!

Not sure what to do, he asks his friend Greta, a former movie star who shunned publicity with her accented lament: I vant to be alone! Likewise, she tells Al Jabr that he must get the box alone!

CLEAR!

Clearly Opposite!

To get the box alone, Al Jabr must clear everything away from it with an opposite (aka inverse) operation. In other words:

- If a number is added to the box, he must subtract it.
- If a number is subtracted from the box, he must add it.
- If the box is multiplied by a number, he must divide by it.
- If the box is divided by a number, he must multiply by it.

Clear A/S M/D!

If the box is surrounded by more than one operator, it's not always clear what to do first. In fact, it's as clear as mud, which of course is not clear at all. Clear A/S M/D means that Al Jabr should proceed in reverse PEMDAS (SADMEP) order, i.e.,

- First clear Addition or Subtraction (A/S).
- Next clear Multiplication or Division (M/D).

GOLDEN!

To keep his measuring scale balanced, Al Jabr must follow the Golden Rule of Equations: Whatever he clears from one side of the scale, he must clear the same amount from the other side.

> Throw M/D!
> If an equation contains fractions, or coefficients with common factors, it may be simpler to Throw M/D (Multiply/Divide) at it before clearing Addition/Subtraction.

PLUG!

Once he thinks he knows what's in the box, Al Jabr takes his sword to "WAC" the golden plug that's holding it shut, then looks inside to confirm his scale findings. In an equation, to check your work, you'll "plug" or substitute the calculated value back into the original equation, "feeding" the variable box, i.e., evaluate: equation value ate. Important: When evaluating, be sure to follow PEMDAS order!

