Math Properties: CADIIZ

Math has so many properties, it's tough to remember them all. To learn the six most common ones, imagine 6 caddies (CADIIZ) roaming their respective golf course properties carrying golf clubs for golfers.

Commutative Property: Change Order

Addends can be attached in any order. Multipliers can be magnified in any order.

Addends can be attached in any group. Multipliers can be magnified in any group.

Distributive Property: Rich Uncle
A multiplier magnifies each term in a group of terms. A divisor dissolves each term in a group of terms.

Identity Property: Still Me

Any addend plus 0 equals the addend. Any multiplier times 1 equals the multiplier.

Inverse Property: Opposite Identity

Any addend plus its negative equals 0 . Any multiplier times its reciprocal equals 1.

SeeMore the Seagull! Place numbers on each wing, and slide them into the answer egg.
\underline{Z} Zero Property: Black Hole
Any multiplier times 0 equals 0 .

Commutative Property: Change Order

Addends can be attached in any order.
 Multipliers can be magnified in any order.

Commutative [cuh-MYU-tuh-tiv] comes from the word commute, which means "to change."
Examples:
 The governor commuted the prisoner's sentence, changing it from 20 years to only 10 .
When caddies commute between home and work, they change their direction of travel.

Your turn!
Change Order, then prove the sums are identical.
$3+4=$

Multiplication

Changing Order yields the same product.

Your turn!
Change Order, then prove the products are identical.
$\mathbf{3 \times 4} \times$

Associative Property: A Social Switch Off

Addends can be attached in any group.
 Multipliers can be magnified in any group.

ASSOciative
O W F
C I F
I T
A C

Associative [uh-SOH-shee-uh-tiv] comes from the word associate, which means "to group together."
Examples: Friends like to associate with each other. The group of volunteers joined the neighborhood association.

Parentheses are used to group items. Operations inside of parentheses are generally performed first.

Addition

A Social Switch Off yields the same sum.

Your turn!
Do A Social Switch Off and prove the sums are equal.
$(3+4)+5=$

Multiplication

A Social Switch Off yields the same product.

Your turn!

Do A Social Switch Off and prove the products are equal.
$(3 \times 4) \times 5=$

Practical Example

Finding " 10 " products

8 TIP:

Associating does not change number order:
$123 \longleftrightarrow 123$
But you can commute and associate in one problem.

Distributive Property: Rich Uncle

A multiplier magnifies each term in a group of terms.

A term is a mathematical quantity. The simplest term is a single number.

Terms are joined by plus
or minus signs, e.g., $4+2-3$ has three terms.

A single term can contain multiplication or division, e.g., 4×3 is one term; $4 \div 2$ is one term.

Distributive [di-STRI-byu-tiv] comes from the word distribute, which means "to divide up and give out."
Examples: The charity decided to distribute the food to each person. The distribution was fair to all.

This property is officially called the
 Distributive Property of Multiplication over Addition

Over Subtraction

A Rich Uncle DistribuGives to each grouped term.

Your turn!

Be a Rich Uncle and magnify the wealth of your niece and nephew!

Draw arrows and calculate.

$$
3 \times(6-4)
$$

Distributive Property: Miserly Uncle
 A divisor dissolves each term in a group of terms.

This property also works with division because multiplying by a fraction is the same as dividing by its denominator, e.g., $1 / 2 \times(8+6)=(8+6) \div 2$ However, instead of magnifying, the denominator dissolves each term.

TIP! Use dashed arrows to indicate dissolving.

Your turn!
Play Miserly Uncle and
dissolve the wealth of your
niece and nephew. Draw
dashed dissolving arrows
and calculate the answer.
$\frac{\mathbf{9 + 3}}{\mathbf{3}}$

Your turn!

Play Miserly Uncle and dissolve the wealth of your niece and nephew. Draw dashed dissolving arrows and calculate the answer.

$$
\frac{9-3}{3}
$$

Distributive Traps

Since the traps on this page don't involve addition or subtraction, they are not technically part of the Distributive Property of Multiplication Over Addition, but they are distributive in nature.

Identity Property: Still Me

Any addend plus 0 equals the addend.
 Any multiplier times 1 equals the multiplier.

Numbers combined with Identity Elements $(0,1)$ remain the same.

I D ENTITY
L
L

Identity [ii-DEN-ti-tee] refers to the unchanging traits that make something or someone unique. Examples: Scientists discovered the identity of the virus. The witness revealed the identity of the thief.

Additive Identity Element Zero Influence

$$
\text { Addend }+0=\text { Addend }
$$

The number 0 is the Additive Identity Element. An element is a "thing." Zero is the only "thing" that won't change the identity of the number you add it to.

Adding something, like a beard, to your face changes your identity. Adding something to a number changes its identity.

But if you add nothing (zero) to your face, your identity remains the same. If you add nothing (zero) to a number, its identity remains the same.

Multiplicative Identity Element One and the Same

Multiplier $\times 1=$ Multiplier

The number 1 is the Multiplicative
[mul-ti-PLIK-uh-tiv] Identity Element. An element is a "thing." One is the only "thing" that won't change the identity of the number you multiply it by.

Magnifying your face changes your identity. Magnifying a number changes its identity.

But if you magnify your face by 1 , it doesn't swell, and your identity remains the same. If you magnify a number by 1 , its identity remains the same.

Your turn!

Insert the Additive Identity Element.

$$
\mathbf{3}+\square=\mathbf{3} \quad \square+\mathbf{3}=\mathbf{3}
$$

Practical Use

The concept of multiplicative identity is used to create Equivalent Fractions.

Your turn!

Insert the Multiplicative Identity Element.

Inverse Property: Opposite Identity

Any addend plus its negative equals 0 .

Any multiplier times its reciprocal equals 1.
Opposite numbers produce Identity Elements: 0 or 1.

Inverse [IN-vurss] means "opposite." Invert means "to turn or flip over."

Examples: Turning the lid clockwise didn't open the jar; so the caddie turned it in the inverse direction. He then inverted the jar, pouring out the ketchup.

Additive Inverse Pile fills Hole

Addend + -Addend $=0$
The inverse (opposite) of a positive pile is a negative hole of the same size. Pushing the pile into the hole fills it up, and the sum is the additive identity element: Zero.

Your turn!
Insert Additive Inverses.

$$
4+\square=0 \quad \square+-5=0
$$

Multiplicative Inverse Flipping \& Melting Popsicles

Multiplier \times Reciprocal $=1$
The inverse (opposite) of a multiplier is its reciprocal [ree-SI-proh-kul], which is the multiplier flipped over. A number multiplied by its reciprocal "melts" into the multiplicative identity element: One.
Convert integers to fractions before inverting, e.g., convert 2 to $2 / 1$.

BrainAid
Imagine flipping a popsicle upside down.
Think popsicle.
Think refliprocal.
Think reciprocal.
Magnifying opposite popsicles heats and
 melts them into one.

Any multiplier times 0 equals 0.

BrainAid

Imagine that the O in zerO is a black hole in space whose intense gravitation pulls in anything that comes near it, leaving nothing behind.

This property is officially called the Multiplicative Property of Zero

Your turn!

Show what emerges from a black hole.

$$
\mathbf{3} \times \mathbf{0}=\square \quad-\mathbf{3} \times \mathbf{0}=\square
$$

Practical Use

In algebra, the Zero Property
is used to find solutions to
factored quadratic equations.

