Geo = Earth Metry = Measure

Circumference

Shape Operators

Geometry uses special operators to show relationships between shapes.

The Similar operator looks like an \underline{S} lying on its back.

Congruent

Same shape, same size.

The Congruent [kawn-GRU-ent] operator combines Similar and Equal signs.

Your turn! Place the Similar or Congruent operator between paired items.
\square

\square
\square

GeoParts

These "Geometry Parts" can be used to build almost any shape.

Naming GeoParts

Point to ($\mathbf{x}, \mathrm{y}, \mathbf{z}$) and Me!

Points can be designated by coordinates [coh-OR-di-nutz] on axes [AX-eez].
Each individual axis [AX-iss] is named with a letter: x, y, or z .

Family Lines

Parallel Line Family

Parallel [PAIR-uh-lel] lines live in the same plane but travel in the exact same direction, so they never touch.

Intersecting Line Family

Intersecting lines live in the same plane, travel in different directions, and touch (intersect) at one point.

Perpendicular [pur-pen-DIK-yu-lur]

 lines intersect at 90° angles.
\perp is the symbol for perpendicular lines.

Identical lines live in the same plane, travel in parallel directions, and intersect at every point.

Intersecting lines create 4 angles.

A Transversal [tranz-VERSS-ul] line "transfers all" of itself across 2 or more lines, rays, or segments.

Perpendicular Bisector

 is a line (or segment, ray, plane) that intersects a line segment at a 90° angle, cutting it into two congruent parts. e.g., The Perpendicular Bisector $\stackrel{\leftrightarrow}{\mathrm{AB}}$ cuts the $10^{\prime \prime}$ line segment $\overline{\mathrm{CD}}$ in half.

Skew Line Family

Skew lines live in different planes, travel in different directions, and never touch.

Skews (excuse) me, I'm passing under you.

BrainAid

Skew lines are so polite, they wouldn't think of touching each other.

Your turn!
Draw Write an expression for this.

The Angle Boys

An angle [ANG-ul] is formed by two rays joined by a common endpoint called the vertex.
Angles are also formed when segments, lines, and other GeoParts intersect.

The AROSR Family
 气 [uh-ROH-sir]

Angular Relations

Complementary Angles (90 ${ }^{\circ}$)

 are "right" to "compliment" each other. [kawm-pluh-MEN-tur-ee]
$\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$

Supplementary Angles ($\mathbf{1 8 0}^{\circ}$) combine to make a $\underline{\mathbf{S}}$ traight line. [suh-pluh-MEN-tur-ee]

Vertical Angles

reside on opposite sides of a vertex, making V -shapes on all four sides.

Alternate Angles

reside on opposite sides of transversals and on the exterior (outside) or interior (inside) of parallel lines.

BrainAid

If you pick up one parallel line and place it on top of the other, you can see that $\angle 1 \& \angle 2$ are equal vertical angles, as are $\angle 3$ and $\angle 4$.

Your turn!

Label the following angular relations.

Your turn!
Fill in the missing angle degrees.

Polygons

Polygons are closed figures formed by line segments that create angles. Each intersection of line segments is a vertex. The plural of vertex is vertices.

Name	Figure
Triangle (3 angles)	\square
Quadrilateral (4 sides)	\square
Pentagon (5 angles)	\square
Hexagon (6 angles)	\square

$$
\begin{gathered}
\text { Poly }=\text { many } \\
\text { gon }=\text { angle } \\
\text { lateral }=\text { side }
\end{gathered}
$$

The number of sides equals the number of angles.

Regular Polygons All sides/angles congruent.

Name	Figure
Heptagon (7 angles)	
Octagon (8 angles)	
Nonagon (9 angles)	
Decagon (10 angles)	

Triangles

Triangles are polygons with three sides, three angles, and three vertices.

Side Classifications (S I d E E		
Name	Congruent Sides	Example
Scalene skalenos $=$ uneven	0	
Isosceles Iso = equal skeles = legs	2	Equal tics mark equal parts.
Equilateral Equal sides (aka Equiangular)	3	

Angle Classifications $(\underline{\underline{A}} \underline{R} \underline{O} \mathrm{~s} \mathrm{r})$		
Name	Angle/s	Example
Acute	All $<90^{\circ}$	
Right	$1=90^{\circ}$	
$\underline{\text { Obtuse }}$	$1>90^{\circ}$	

Quadrilaterals

Quadrilaterals are polygons with four sides, four angles, and four vertices.

Types of Quadrilaterals		
Name	Features	Figure
Parallelogram	- Opposite sides parallel. - Opposite sides congruent. - Opposite angles congruent. - Diagonals bisect.	
Rectangle	Special Parallelogram - All right angles. (A square is also a rectangle)	
Square	Special Parallelogram - All right angles. - All sides congruent. Equal tics equal parts.	
Rhombus	Special Parallelogram - All sides congruent. (A square is also a rhombus)	
Trapezoid	Quadrilateral - One set of parallel sides.	\square

Rectangle ABCD, BCDA, etc.
360°
A quadrilateral can be made from two triangles, each with 180°. Twice 180° is 360°

The inside angles of a quadrilateral add to 360°.

Interior Angles

Sum of Interior Angles of a Polygon

$$
(n-2) \times 180^{\circ}
$$

$\mathrm{n}=$ number of sides (or angles)
Triangle: $(3-2) \times 180^{\circ}=1 \times 180^{\circ}=180^{\circ}$
Quadrilateral: $(4-2) \times 180^{\circ}=2 \times 180^{\circ}=360^{\circ}$
Pentagon: $(5-2) \times 180^{\circ}=3 \times 180^{\circ}=540^{\circ}$
Measure of one Interior Angle of a Regular Polygon
Sum of Interior Angles $\quad \underline{(n-2) \times 180^{\circ}}$ Number of Angles
n
Pentagon: $540^{\circ} / 5=108^{\circ}$ per angle

BrainAid

Knock 2 sides off a triangle to get a 180° line.

Your turn!

Regular Hexagon Sum interior angles

Size of one angle

Measuring Polygons

It's easier to work with polygons if the base \mathbf{b} is on the bottom.

The height can be outside the figure.

A trapezoid has two bases.

Perimeter of Polygon

Perimeter [pur-RIM-eh-tur] is a measure of the distance around an object.

$$
\text { Peri }=\text { around } \quad \text { meter }=\text { measure }
$$

Perimeter of Polygon

The perimeter of a polygon is the sum of its sides.

Perimeter of Rectangle

The perimeter of a rectangle is twice its base plus twice its height.
$\mathbf{P}_{\text {rectangle }}=\mathbf{2 b}+\mathbf{2 h}$

$2(b+h)$

Alternate Variables:
$\mathrm{L}=$ Length (long side)
$\mathrm{W}=$ Width (short side)

Perimeter of Square

The perimeter of a square is four times the length of one side.
$\mathbf{P}_{\text {square }}=4 \mathrm{~s}$

Your turn!

How much fencing is needed to enclose a 7 ft by 5 ft yard?

Area of Polygon

Area [AIR-ee-uh] is the number of squares that will fit on the surface of the polygon. Area is Latin for "level ground" or "open space."

Imagine that the top
of the "A" in
SquArea is a square.

Shortcut

To calculate the number of squares that fit in a rectangle, multiply the number of squares across the bottom times the number of squares up one side!
$\mathbf{6} \times \mathbf{4}=\mathbf{2 4}$ squares

6 across

123456

Units of Measure

Lengths are measure in linear units: e.g., inches.

Since Areas multiply length \times length, they are measured in square units: e.g., square inches (in²)

Your turn!

How many square feet of sod will cover a 7 ft by 5 ft field?

Area of Parallelogram

Since a parallelogram can be made into a rectangle, its area is base times height.
$\mathbf{A}_{\square}=\mathbf{b h}$

Cut a triangle from the left side and attach it to the right side.

Multiply squares across times squares up.

Parallelogram Features: Opposite angles are congruent; Diagonals bisect each other.

$$
\mathbf{A}_{\text {square }}=\mathbf{s}^{2}
$$

The area of a square is the length of one side squared.

Area of Triangle

Since a triangle is half a parallelogram, its area is $1 / 2$ base times height.

$$
\mathbf{A}_{\triangle}=1 / 2 \mathbf{b h}
$$

Area of Trapezoid

Since a trapezoid can be split into two triangles, its area is a combination of both.
$\mathbf{A}_{\square}=1 / 2 b_{1} h+1 / 2 b_{2} h=1 / 2\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right) \mathbf{h}$

Area of Regular Polygon

Since a regular polygon can be split into triangles, its area is equivalent to the sum of the areas of all triangles inside it. The area of one internal triangle is $1 / 2 \mathbf{s a}$ where $\mathbf{s}=$ side of polygon (base) and $\mathbf{a}=$ apothem (height). The sum of all sides of the polygon is its Perimeter $P=s_{1}+s_{2}+s_{3} \ldots$. Therefore the area of all triangles in a polygon would be $1 / 2$ Perimeter times apothem.

$$
\mathbf{A}_{\square}=1 / 2 \mathbf{P a}
$$

Apothem [A-puh-thum] The line segment from the center of a regular polygon to the midpoint of a side.

The perimeter is the sum of the sides which make up the bases of all the triangles.

Your turn!

How many squares will fit in this regular pentagon?

Circles

A circle is a set of points equidistant from a center point.
 C circling the perimeter.

Imagine the letter D dividing the circle through its center. In Greek: dia $=$ across; meter $=$ measure. Diameter $=2 \times$ radius

Imagine the leg of the letter ' R ' radiating from the center. $2 \times$ radius $=$ Diameter

Imagine the crossbar of H in cHord as a line segment crossing the circle. Any chord that passes through the center is also a Diameter.

Imagine the small c in arc is a part circle.

Circumference of Circle

Circumference equals diameter times π (pi).
$\mathbf{C}=\mathbf{d} \boldsymbol{\pi} \quad[\pi=\sim 3.14$ or $\sim 22 / 7]$
Alternate formula: $\mathrm{C}=2 \pi \mathrm{r}$
Early mathematicians discovered that the distance around any circle was just over 3 times its diameter. They named this ratio "pi" (Greek for periphery).

Area of Circle

Area equals π times radius squared.

$$
\mathbf{A}=\pi \mathbf{r}^{2}
$$

Your turn!

What is the distance around a circle whose diameter is 10 ?

