Mental Math
 Addition Attaches

Add-quire

Acquire to make an addend end in ZERO.

Split \& Attach

Split by place values. Attach in the order you'd say it.
Like splitting wood

Subtraction Steals

Diminish this

Steal from both piles to maintain difference between.

Difference

Subtract Negative $=$ Positive

$3--1=3+1=4$

Difference between
3 and -1 is 4

Sub Bump

Bump to make subtrahend end in ZERO.

Fill Up
Add to fill up to zeros in minuend.

Add to verify the difference.
to 10

Filling the ones place to 10 starts dominos falling as 1 s are carried and added.

Imagine filling up a container.

Your turn!
100
-28

Borrow \& Spend Subtraction

Shop till you drop!

Multiplication Magnifies

To steal two 3-deep holes, you need a 6-high pile.

Multiply Negatives $=$ Positive

$2 \times \mathrm{nn}$: Split \& Double

Split by place values, double each, reattach.

Your turn!
2×46

The $9 \times$ Ladder

Your turn!
2×46

$11 \times n n$: Smash \& Add

Smash digits so they add in the middle.

If the middle is 10 or more, smash again to fuse the 1 to the hundreds digit.

Your turn!
11×99

11×99

Popcorn Multiplication!

Multi-digit multiplication can be as much fun as the popcorn machine at the movies!

Imagine the digits to be multiplied are unpopped kernels.

Use a magnifying glass to heat 6 times 9 kernels until they pop to 54.

Magnify 6 times 8 kernels to pop 48.

Magnify 7 times 8 kernels to pop 56, kernels to pop 56,
which heat \& pop 6 partials to make 62.
2 covers 6 so the 6 is not added again later.

Your turn!
 98
 $\begin{array}{r}95 \\ \times 5 \\ \hline\end{array}$

Division Dissolves

Divide number divided

even \div 2: Split \& Halve

Split by place values, halve each, reattach.

odd $\div 2$: Split \& Halve

Split by place values, halve each, reattach.

A 2-deep tablet-hole dissolves into a 4-deep liquid-hole 2 times.

Divide Negatives $=$ Positive

RAINBOW Division

Legend has it there's a pot of gold at the end of every rainbow. Here's a fun way to perform the long division algorithm!

$2 \longdiv { 3 4 }$

Starting with a traditional long division problem...

Subtraction Sam steals the
2-pot of gold from the 3 -liquid, leaving 1.

Morris magnifies 7 times the 2-tablet creating the second arc of the rainbow.

Rainbows need rain, so 4 rains down to join the 1 .

Sam steals the 14-pot of gold from the 14-liquid, leaving 0 .

Dietrich dissolves the 2-tablet into the 14-liquid 7 times.

Your turn!
Fill in the missing items.

[^0]
A Tale of Two Snowmen

Exponentiation Expands

Exponentiation $=$ Fast Multiplication $2 \times 2 \times 2=8$ or $2^{3}=8$

M-Ad Bees

To multiply bees of the same breed, Merge bases and Add exponents.

Bees run into each other, get mad, then merge bodies and add power hats.

Ra-M Bee
To Raise a bee to a power, Multiply exponents.

$\left(2^{2}\right)^{3}$
$2^{2 \times 3}$
2^{6}

Ram rams hive, knocks it away, breaks horn, agitates bee, raising and multiplying its power.

PEMDAS Prioritizes

Priority of Operations

When a math problem has more than one operator, work in this order:

- Parentheses

If nested, start with innermost set: (Do $2^{\text {nd }}\left(\right.$ do $\left.1^{\text {st }}\right)$).

- Exponentiation
- Multiplication or Division

If encounter both, perform in left-to-right order.

- Addition or Subtraction

If encounter both, perform in left-to-right order.

The PEMDAS Racers

[^0]: BrainAid A cloud DMS the light then it rains!
 Long division does Do Division, Multiplication, $\underline{\text { Subtraction, then rain. Repeat as needed. }}$ not use Addition!

