Lever

Machine used to move a load with less effort, or more distance \& speed, or in a new direction. From the French lever [luh-vee]: to raise or lift (think levitate).


```
- Fulcrum : Pivot point or hinge
- Load : Object or force that resists movement
- Effort : Force applied to move Load
- Arm : Structure that transfers force
```

Lever Classes	F	L	E
What's in the middle?	2	2	3

1st Class

Fulcrum in Middle

- Less Effort needed to move Load.
- Load moves slower/less than Effort.
- Load moves in different direction to Effort.
$2^{\text {nd }}$ Class
Load in Middle

- Less Effort needed to move Load.
- Load moves slower/less than Effort.
- Load moves in same direction as Effort.
$3^{\text {rd }}$ Class

- More Effort needed to move Load.
- Load moves faster/more than Effort.
- Load moves in same direction as Effort.

When analyzing a lever, first find the Fulcrum, then imagine lines drawn from it to the Load and Effort.

Add to these lists as you discover more lever examples. (The same item may fit in more than one class.)
$1^{\text {st }}$ Class
Balance Scale
Spatula (if push handle down)
Catapult (if launcher at end)

Double ${ }^{\text {st }}$ Class

Pliers / Wire Cutters
Tin Snips / Garden Shears
$2^{\text {nd }}$ Class
Wrench
Spatula (if lift handle up)
Stapler / Paper Cutter

Double 2 ${ }^{\text {nd }}$ Class
Wrist Squeezer
Fireplace Bellows

3rd Class
Broom / Rake / Hoe Striking Hammer / Hatchet Catapult (if launcher in middle)

Double $3^{\text {rd }}$ Class
BBQ Tongs
Human Limbs / Jaw

Hybrid: Nail clippers: 2nd (top) + Dbl 3rd (bottoms)

Law of the Lever

The Work input to a lever equals the Work output by the lever.

$$
\text { Work }=\text { Force } \times \text { Distance }
$$

Lever Problems

Find F_{L}

$$
\begin{aligned}
& F_{E} D_{E}=F_{L} D_{L} \\
&(9 \mid b)(3 \mathrm{ft})=F_{L}(1 \mathrm{ft}) \\
& \frac{(9 \mid b)(3 \mathrm{ft})}{(1, \mathrm{ff})}=\frac{F_{L}(1 . \mathrm{ft})}{(f \mathrm{ft)}}
\end{aligned}
$$

$$
27 \mathrm{lb}=F_{L}
$$

Find F_{E}

$$
\begin{aligned}
F_{E} D_{E} & =F_{L} D_{L} \\
F_{E}(4 \mathrm{ff}) & =(12 \mathrm{lb})(2 \mathrm{ft}) \\
\frac{\mathrm{F}_{E}(4 \mathrm{ff})}{(12 \mathrm{ft})} & =\frac{(12 \mathrm{lb})(2 \mathrm{ft})}{(4 \mathrm{ff})} \\
\mathrm{F}_{\mathrm{E}} & =6 \mathrm{lb}
\end{aligned}
$$

Rule of Thumb
The longer the Effort arm, the easier it is to move the Load.

Archimedes (Greece, ~200 BCE)
Find D_{E}

Mentally multiply respective Effort and Load forces and distances to ensure they yield identical products.

Since levers rotate in arcs (vs. straight lines), the technically-correct terminology is
Moment = Force \times Distance,
where "Moment" is the turning force or torque.

Lever Mechanical Advantage (MA)

MA: Factor by which a lever changes the force, distance \& speed, or direction of work.
Tradeoff: Increased output force means less output distance \& speed and vice versa.

Deriving MA
$\mathrm{F}_{\mathrm{E}} \mathrm{D}_{\mathrm{E}}=\mathrm{F}_{L} \mathrm{D}_{\mathrm{L}}$
$\frac{F_{E} D_{E}}{F_{E} D_{L}}=\frac{F_{L} B_{L}}{F_{E} D_{L}}$
$\frac{D_{E}}{D_{L}}=\frac{F_{L}}{F_{E}}$
$\begin{array}{cc}\text { Distance } & \begin{array}{c}\text { Force } \\ \text { Ratio }\end{array} \\ \text { Ratio }\end{array}$
A ratio is a relation between numbers

The Load is also	R
called the	e
resistance,	S
because it resists	i
the Output Force	S
that moves it.	t

$$
\bigodot_{巳}^{〔} \begin{array}{ccc}
M A=D_{E} / D_{L} & M A=L / E & M A=\text { Output / Input } \\
\text { "made dull by distance" } & \text { "male force" } & \text { "Chairman } \underline{M A O} \text { is } \operatorname{In} "
\end{array}
$$

LOAD
U n
T c
Pe
U
T

Effects of MA

Input		Factor Fultiplier Force	Output Force $F_{\mathrm{E}}$$\times \mathbf{M A}=$
F_{L}			

$F_{E} \times M A=F_{L}$
"FEMA fights FLoods" Federal Emergency Management Agency

MA Problems

Find the MA of this lever.

If $M A=5$, what Load can be moved with a 10 lb Effort?

If MA $=4$, what Effort will move a 20 lb Load?
$M A=D_{E} / D_{L}=3 \mathrm{ft} / 1 \mathrm{ft}=3$
$M A=L / E=27 \mathrm{lb} / 9 \mathrm{lb}=3 \mathrm{~V}$
$F_{E} \times M A=F_{L}$
$\begin{aligned} 10 \mathrm{lb} \times 5 & =F_{L} \\ 50 \mathrm{lb} & =F_{L}\end{aligned}$
$F_{E} \times M A=F_{L}$
$\begin{array}{r}\mathrm{F}_{\mathrm{E}} \times 4=20 \mathrm{lb} \\ \mathrm{F}_{\mathrm{E}}=5 \mathrm{lb} \\ \hline\end{array}$

Speed Factor $=1 / \mathrm{MA}$

If $\mathrm{MA}=2$, speed factor is $1 / 2$ (halved)
If $M A=1 / 2$, speed factor is 2 (doubled)

Matching

1) \qquad Fulcrum
a. Transmits force
2) __ Load
b. Input force
3) ___ Effort
c. Pivot or hinge
4) \qquad Arm
d. Force \times Distance
5) \qquad Work
e. Resists movement

True or False
6) \qquad A wheelbarrow is a $3^{\text {rd }}$ class lever.
7) \qquad A $3^{\text {rd }}$ class lever trades extra effort for more speed.
8) \qquad Force input must equal Force output.
9) \qquad A longer Effort Arm requires less effort.
10) \qquad A fractional Mechanical Advantage increases speed.
11) Find F_{L}

13) Find MA if 50 lbs of Effort moves a 300 lb Load.
12) Find MA using both Distance and Force Ratios.

14) Find MA if Effort Arm is half Load Arm.

