

Factors

Factors are integers multiplied to make Products.
Factor \times Factor $=$ Product $2 \times 3=6$

BrainAids

$$
\begin{aligned}
& \text { Zero = Factor } \\
& \text { Zero } \neq \text { Divisor }
\end{aligned}
$$

Zero can be a factor since zero times any other integer yields a product, namely zero.

But in standard math, division by zero is not permitted, so zero can not be a Divisor.

TRAP

Fractions $\boldsymbol{= \text { Factors }}$
Fractions can be used as multipliers to make products:
[$1 / 2 \times 6=3$].
However, by definition, fractions are not considered to be factors.

Extracting Al/ Factors
All-In-The-Box Factoring

To extract
ALL factors,
start with 1
and continue
in numerical
order:
$2,3,4,5 \ldots$

Extracting Prime Factors

Prime Coconut Factoring

Imagine that the Product is a falling coconut that splits into prime factor and composite factor nutrients.
To extract PRIME factors, start with 2 and continue in prime number order: $3,5,7,11,13 \ldots$

Place the Product in a coconut and shake its tree to dislodge it.

Proceed in 2, 3, 5, $7 \ldots$ order to find and split out the first factor pair.

Proceed in 2, 3, 5, 7... order to split any composites into primes.

Box the prime factors to eat later for lunch.

Already Prime!

Extracting Common Factors

Solution

Start by extracting a 4, which is the Greatest Common Factor (GCF).

Factoring vs. Distribution

Factoring is the opposite of the Distributive Property.

GCF: Greatest Common Factor

The GCF is the largest factor shared by the given products.

AII-In-The-Box GCF

Circle factors that are common to each product.

Factors of 8 :
Factors of 12 :

This holds true for positive GCFs. However, if the smaller product is a factor of the larger product, the GCF equals the smaller product. Example: For products 2 and 4 , the GCF $=2$.

Prime Coconut GCF Grip, Catch, Focus

Grip each product tree and shake out and box its prime factors.
Catch (circle) each falling factor that is common to the products each time it occurs.
Focus on and magnify (multiply) one set of circled factors.

Why Factor?

To Reduce Fractions

Divide numerator and denominator by a common factor (Division Diet).

To Simplify Expressions

Extracting common factors can reduce expressions to their simplest form.

$$
\frac{2 x+4 y}{3 x+6 y}=\frac{2(x+2 y)}{3(x+2 y)}=\frac{2}{3}
$$

To Solve Equations

Example: One way to start solving a Quadratic trinomial is to factor it into two binomials.

$$
\begin{gathered}
x^{2}+3 x+2=0 \\
(x+1)(x+2) \\
x+1=0 \quad x+2=0 \\
x=-1 \quad x=-2
\end{gathered}
$$

To Find the LCM

Prime factoring can be used as the first step in finding the LCM (Least Common Multiple).

Your Turn!

Matching

1) Factor
a. Extracting multipliers from products.
2) ___ Product
b. Multipliers that make a Product.
3) \qquad Factoring
c. Result of multiplying factors.
4) \qquad Factor pair
d. Divisible by 1 and itself only.
5) \qquad Prime factor
e. Multiplier

True or False

6) \qquad Factors can be fractions.
7) \qquad Factors can be negative.
8) \qquad The word "factor" can be used as a noun or a verb.
9) \qquad Factoring is the opposite of the Associative Property.
10) \qquad A positive GCF is larger than the products it's derived from.
11) Extract all factors of 18.
12) Extract prime factors of 18.
13) Extract common factor of $(15+25)$.
14) Find the GCF of 18 and 36.
