

Multiples

Multiples are integers formed by multiplying a base factor by a series of factors.

Base \times Series $=$ Multiples

$$
\begin{aligned}
& 2 \times 1=2 \\
& 2 \times 2=4 \\
& 2 \times 3=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Base }=\text { constant } \\
& \text { Series }=1,2,3 \ldots
\end{aligned}
$$

Series

\times	0	1	2	3	4	5
$\begin{aligned} & \sim \\ & 0_{0} \\ & \tilde{\sim}_{0} \end{aligned}$						10
	0				8	2
				6	2	2
			4	2	2	2
		2	2	2	2	2
		2	2	2	2	2

Zero
is a multiple of
every Base and 0.
Base $\times 0=0$

BrainAids
Multiple Mounds are
Product Piles built from Factor Fragments.

Multiples are More than the factors they're built from (providing the factors are > 1).

Base Series=Multiple
When building Multiple Mounds, BaSeM (base them) on the same base factor.

Can Multiples be Negative?
Yes, but the result is negative holes instead of positive piles.

Series

LCM: Least Common Multiple

The LCM is the smallest multiple shared by the given bases.

List several multiples for each desired base, then circle the multiples they have in common.
The smallest common multiple is the LCM.

$$
\text { LCM = } 6
$$

\mathbf{x}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\boldsymbol{2}$	4	6	8	10	12
$\boldsymbol{\sim}$					
$\boldsymbol{\sim}$	$\mathbf{6}$	6	9	12	15

Common Multiples
6,12

This holds true for positive LCMs. However, if the larger base is a multiple of the smaller base, the LCM equals the larger base. Example: For bases 2 and 4 , the $L C M=4$.

LCMs from Primes

Load, Crush, Mix, $\underline{\text { Scoop }}$

Scoop out and multiply each Base by the prime nutrient/s it lacks to make it into the LCM.

4 scoops out $(3 \times 3) \longrightarrow 4 \times 9=36$
6 scoops out $(2 \times 3) \longrightarrow 6 \times 6=36$
9 scoops out $(2 \times 2) \longrightarrow 9 \times 4=36$
Multiplying each Base by the product of its scooped out factors yields the LCM.

When you get to the 9 , a 3 is already in the pot (from the 6), so you must crush the 9's first 3.

But there isn't another 3 in the pot, so you must load the 9's second 3.

The goal is to have all factors of each Base represented in the pot, without duplicating factors.

Why crush? So you don't add excess calories to the stew, which would make the LCM too large and require a Division Diet.

Why Multiples?

To Create Times Table

Multiplication Table $=$ Multiples.
Series

Multiples

To Create Equivalent Fractions

Multiply the numerator and denominator by the same Base (Multiply Muscles).

To Find the LCD

When adding or subtracting unlike fractions, the LCM is the LCD (Least Common Denominator).

To Clear Denominators

When an equation has denominators, multiplying by the LCM can make it easier to solve.

$$
\left.\frac{\mathrm{z}}{6}+\frac{1}{2}=\frac{2}{3} \longrightarrow 6 \mathrm{LCM}_{\mathrm{z}}^{6}+\frac{1}{2}=\frac{2}{3}\right] \quad \mathrm{z}+3=4
$$

Matching

1) \qquad Multiple
a. Smallest multiple shared by bases.
2) __ Base
b. Multiples shared by bases.
3) \qquad Common multiples
c. Constant on which multiples are built.
4) \qquad LCM
d. Product formed from Base \times Series.
5) __ LCD
e. Smallest multiple shared by denominators.

True or False

6) \qquad A multiple is an integer.
7) \qquad Zero is a multiple of every base.
8) \qquad Since 16 and 24 are multiples of 8 , then $16+24$ is a multiple of 8 .
9) \qquad The Times Table is composed of multiples.
10) \qquad A positive LCM is smaller than the bases it's derived from.
11) Create a table to find the LCM of 3 and 4.
12) Use primes to find the LCM of 15 and 25.
13) Find the LCM of 5,8 , and 12.
14) Scoop out factors that make $5,8,12=$ LCM.
