

Yes, but the result is negative holes instead of positive piles.

LCM: Least Common Multiple

The LCM is the *smallest* multiple shared by the given bases.

Why Multiples?

To Create Times Table

Multiplication Table = Multiples.

tion	Tabl	le = N	Iultip	les.	Series								
	×	2	3	4	5	6	7	8	9	10	11	12	
Ваѕеѕ	2	4	6	8	10	12	14	16	18	20	22	24	
	3	6	9	12	15	18	21	24	27	30	33	36	
	4	8	12	16	20	24	28	32	36	40	44	48	
	5	10	15	20	25	30	35	40	45	50	55	60	
	6	12	18	24	30	36	42	48	54	60	66	72	
	7	14	21	28	35	42	49	56	63	70	77	84	
	8	16	24	32	40	48	56	64	72	80	88	96	
	9	18	27	36	45	54	63	72	81	90	99	108	
	10	20	30	40	50	60	70	80	90	100	110	120	
	11	22	33	44	55	66	77	88	99	110	121	132	
	12	24	36	48	60	72	84	96	108	120	132	144	

To Create Equivalent Fractions

Multiply the numerator and denominator by the same Base (Multiply Muscles).

To Find the LCD

When adding or subtracting unlike fractions, the LCM is the LCD (Least Common Denominator).

To Clear Denominators

When an equation has denominators, multiplying by the LCM can make it easier to solve.

$$\frac{z}{6} + \frac{1}{2} = \frac{2}{3} \longrightarrow 6\left[\frac{z}{6} + \frac{1}{2} = \frac{2}{3}\right] \longrightarrow z + 3 = 4$$

Your Turn! -----

Matching

1) Multiple	a. Smallest multiple shared by bases.							
2) Base	b. Multiples shared by bases.							
3) Common multiples	c. Constant on which multiples are built.							
4) LCM	d. Product formed from Base × Series.							
5) LCD	e. Smallest multiple shared by denominators.							
True or False								
6) A multiple is an integer.								
7) Zero is a multiple of every base.								
8) Since 16 and 24 are multiples of 8, then 16+24 is a multiple of 8.								
9) The Times Table is composed of multiples.								
10) A positive LCM is smaller than the bases it's derived from.								
11) Create a table to find the LCM of 3 and 4. 12) Use primes to find the LCM of 15 and								

13) Find the LCM of 5, 8, and 12.

14) Scoop out factors that make 5, 8, 12 = LCM.