Problem Analysis

Key to word-problem solvability.

Equations & Unknowns

Some multiple-choice tests have an answer option similar to this:

• Not enough information given.

Analyzing a problem can help you decide whether you have enough information *before* you attempt to solve it.

Unique Solution

To yield a single solution, problems must produce either one equation with one unknown (1EqUnk) or provide enough information to reduce more complex equations to 1EqUnks.

Multiple Solutions

Some problems may have more than one solution. For example, one equation with two unknowns (1Eq2Unk) may yield every point on the line it represents. e.g., X + Y = 5 produces (-2, 7) (-1,6) (0,5) (1,4) (2,3)...

The amount of data needed for *unique* solutions depends on the number of equations and unknowns.

Equation Type	Data for Unique Solution	Example
1EqUnk 1 Equation, 1 Unknown	None needed The single unknown may appear more than once in the equation, but it's still 1 unknown.	X + 8 = 12 To solve, get X alone. You may first need to combine multiple X's as in X + 2X = 12.
1Eq2Unk 1 Equation, 2 Unknowns	1 equivalency Equivalencies assign values to variables or relate variables to variables.	X + Y = 12 To solve for a unique X, you must be given 1 equivalency like Y=8 or Y=2X.
1Eq3Unk 1 Equation, 3 Unknowns	2 equivalencies General Rule: For 1Eqs, you need equivalencies for each Unk but one.	X + Y + Z = 12 For a unique X, you must be given 2 equivalencies like Y=6 and Z=2X.
2Eq2Unk 2 Equations, 2 Unknowns	None needed For lines that intersect. (Collinear lines share all points.) (Parallel lines share no points.)	X + Y = 12 X - Y = 6 For the unique (X,Y) where the two lines intersect, use Linear Elimination or Substitution techniques.
2Eq6Unk 2 Equations, 6 Unknowns	4 equivalencies If you're given only 3 equivalencies, the result may be solvable as a Quadratic (ax ² +bx+c=0) equation.	$\begin{array}{ccc} Q_1 = R_1 K_1 & Q_2 = R_2 K_2 \\ \text{To solve for all unknowns, you need 4} \\ \text{equivalencies, at least 2 in each equation or} \\ \text{with equivalencies } between equations. \end{array}$
2Eq6Unk Example Solve for $Q_1=R_1K_1$ and $Q_2=R_2K_2$ Given: $\bigcirc Q_1=Q_2$ $\bigcirc R_1=2$ $@R_2=3$ $@K_1=K_2+2$	bers to n es. $ \begin{array}{cccc} Q_1 & \overline{\bigcirc} & Q_2 \\ & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	$\begin{array}{c} \overset{\text{``Plug-in''}}{=} K_2 + 2 \\ \overset{\text{=}}{=} 4 + 2 \\ \overset{\text{=}}{=} 6 \\ \end{array}$ $= R_1 K_1 \\ \overset{\text{O}}{=} 2(6) \\ \overset{\text{O}}{=} 12 \\ \end{array}$ $\begin{array}{c} Q_2 = R_2 K_2 \\ \overset{\text{O}}{=} 3(4) \\ \hline Q_2 = 12 \\ \end{array}$

Direct vs. Inverse Proportionality

Analyzing relationships between problem elements.

Directly Proportional

To maintain equivalencies, directly-proportional items must rise and fall in the same direction.

Inversely Proportional

To maintain equivalencies, inversely-proportional items must rise and fall in *opposite* directions.

Proportional Relationship Problem

Create an equation for: Your <u>Chance of winning a raffle is *directly* proportional to the number of tickets you <u>Buy</u> and *inversely* proportional to the number of tickets <u>Sold</u>.</u>

Problem Analysis:

- Directly Proportional: The more tickets you buy (B), the more chances (C) you have to win.
- Inversely Proportional: The more tickets sold (S), the fewer chances (C) you have to win.

Paradox

Up in value would make *heavier* number

push *down* on seesaw.

Tip: Think

opposite

direction.

Answers: [1] Yes, [2] No, [3] Yes, [4] Yes, [5] D, [6] I, [7] D, [8] I, [9] S=A/P, [10] Q=PK

Is there enough information to solve each problem? Circle "Yes" or "No."

- 1. Belle had 10 Fruits consisting of Apples and Oranges. Four were apples. How many were oranges?
 - Equation: F = A + O
 - Type: 1Eq3Unk
 - Equivalencies: F = 10, A = 4
- 2. Sal drove a Distance of 30 miles at a given Rate of speed. How much Time did it take?
 - Equation: D = RT
 - Type: 1Eq3Unk
 - Equivalencies: D = 30

3. Pia was 4 years younger than Jim. Jim was twice Pia's age? How old were they?

- Equations: P = J 4 J = 2P
- Type: 2Eq2Unk
- Equivalencies: None
- 4. Train A left the station heading west at 50 mph. At the same time Train B headed east at 60 mph. How far were they apart 3 hours later?
 - Equations: $D_A = R_A T_A$ $D_B = R_B T_B$
 - Type: 2Eq6Unk
 - Equivalencies: $R_A=50$, $R_B=60$, $T_A=3$, $T_B=3$

Is the described relationship Directly or Inversely proportional? Circle your answer.

5. The number of trees in an orchard and the total amount of fruit.

6. The unpopularity of a politician and his chances of being elected.

- 7. The rate of speed and the distance traveled in a given amount of time.
- 8. The rate of speed and the time it takes to travel a given distance.

Create Proportional Relationship Equations

9. The Share of food that each person gets is directly proportional to the Amount of food and inversely proportional to the number of People.

10. The Quantity of gold in a rock is directly proportional to both the Percent of gold in the rock and the size of the rocK.

Directly / Inversely Directly / Inversely Directly / Inversely

> Directly / Inversely

Enough Information? Yes / No

👞 Your Turn 🚽