

The standard division operator looks like a fraction with a number on top and bottom.

Only $1 / 2$ of a 2 -high tablet (divisor) will dissolve into a 1-high liquid (dividend).

Terms of a Fraction

The numerator and denominator are called the terms of the fraction, as in "reduce to lowest terms."

Proper Fraction

Behaves as a part.

Improper Fraction

Misbehaves: Bigger than a part.

Mixed Number

All mixed up: Whole and part.

Adding/Subtracting Like Fractions

BrainAid: Imagine denominators are fruit. 'Like' fractions have the same fruit on the bottom.

Now instead of apples, imagine a tree in the jungle that produces a fruit the natives call a "fifth."

over one denominator.

Subtract
 Steal Numerators

Now instead of apples, imagine a lucious purple fruit called a "seventh."

To subtract 'like' fractions, steal an equal amount from each numerator and place the difference over one denominator.

(1) TRAP! Do not subtract denominators! You'd have zero fruit on the bottom; e.g.,
I 3 oranges -1 orange do not make 0 oranges! I

Multiplying Fractions

Merge, Melt, \& Magnify

Imagine MathBots consume fruit (tablets) and juice (liquid) which can dissolve (mett) through digestive membranes (fraction bars).

 Digestive
membrane
through
which
tablets \&
liquid can
melt.

MERGE
fraction bars

Merged membranes enable crossmelting.
 terms.

Tablets and liquids can be on the top or bottom and melt up or down.

Multiply
Merge, Melt, \& Magnify
$\frac{3}{4} \times \frac{8}{9}=-$
This problem has a double melt!

Antacid Partial Melt

Melting before magnifying avoids the need to reduce later. If a tablet won't completely melt into a liquid, bring in antacid tablets (common factors) to aid digestion and melt both by the same amount.

Dividing Fractions

Dive the Divisor

Diving
Divisor

Diver's heel kicks and flips it to \times.

Complex Fraction
 Divisor Down Under

It sounds difficult, but a "complex" fraction is just one fraction vertically divided by another.

Equivalent Fractions

Equivalent Fractions are equal in value but not in appearance.

Multiply Muscles to Build Fraction

Division Diet to Reduce Fraction

Unlike Fractions

Fractions with the different fruit on the bottom are called "unlike" fractions.

3 apples +2 pears $=? ?$?

Problem: Can't meaningfully add unlike items like apples and pears.
Question: Do they have anything in common? Answer: They are all fruits!

3 fruits +2 fruits $=5$ fruits

1 half +1 third $=$???
Problem: Can't meaningfully add unlike fractions like halves and thirds.
Question: Do they have anything in common?
Answer: They can both be split into sixths!

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

3 sixths +2 sixths $=5$ sixths

Question: How do we make unlike fractions into like fractions?
Answer: Create equivalent fractions with common denominators!

Equivalent Fraction Table						
	\times	$\frac{2}{2}$	$\frac{3}{3}$	$\frac{4}{4}$	$\frac{5}{5}$	6
b	$\frac{1}{2}$	$\frac{2}{4}$	$\frac{3}{6}$	$\frac{4}{8}$	$\frac{5}{10}$	$\frac{6}{(12)}$
s	$\frac{1}{3}$	$\frac{2}{6}$	$\frac{3}{9}$	$\frac{4}{(12)}$	$\frac{5}{15}$	$\frac{6}{18}$

Common Denominators: 6,12
LCD $=$ Least Common Denominator $=6$
Using the LCD keeps the equivalent fractions small and easy to work with and the answer at or near to lowest terms.

Fraction Series (all equal 1)

Equivalents of $1 / 2$
Equivalents of $1 / 3$

The LCD is the smallest multiple (aka product) that the original denominators will dissolve into.

Spotlighting: Add/Subtract Unlike Fractions

Spotlighting creates equivalent fractions by multiplying the top and bottom of each fraction by the denominator of the other, automatically producing common denominators.

Case 1: Denominators With No Common Factors

Common Factors
Factors are multipliers used to make products.
Some products have factors in common, e.g., 4 and 6 have a common factor of 2 .
Other products, e.g., 4 and 9, have no common factors.

Draw box around right equivalent fraction.

Attach
boxed numerators.

Compact Version
Imagine spotlights arcing across the night sky!

Subtract Unlike Spotlight

$$
\square \frac{2}{3}-\frac{1}{4} \square \square=-
$$

Case 2: Denominators With Common Factors

Compact Version

Improper = Mixed

Improper Fractions and Mixed Numbers are alternate forms of the same number.
BrainAid: Imagine an improper fraction on a wall-hinged bed.

2 goes in front.

Mixed-up MathBot makes bed, goes to sleep, and dreams of being Whole + part.

Improper to Mixed Bed to Floor * Rainbow Division

Improper to Mixed

Bed to Floor * Rainbow Division
$\frac{5}{2}$
$\frac{15}{4}$ $\frac{26}{3}$

Half Spotlight \& Add

Mixed Number	Half Spotlight (multiply) denominator times whole number.	Add product to numerator.	Place sum over denominator to make an Improper fraction.
$1 \frac{1}{2}$	2	$\frac{1}{2}$	

Why It Works
A mixed number is actually an addition, e.g., $11 / 2$ is pronounced " 1 and $1 / 2$ " which means $1+1 / 2$.

Since the denominator remains the same, you only have to 'half' spotlight and add, i.e., follow the green arrows only.

Mixed to Improper
Half Spotlight \& Add
$2 \frac{3}{4}$

Comparing Fractions
 Top Spotlight

This technique makes it easy to find the larger of two fractions.

Question: Why is it unnecessary to spotlight across denominators?
Answer: Since spotlighting produces equal denominators, the cross-products alone tell which fraction is larger.

Decimals $=$ Fractions

Decimals are fractions whose denominators are powers of 10 (i.e., 10, 100, 1000...).

.5	$=$	$5 / 10$	$=$	5 tenths
.50	$=$	$50 / 100$	$=$	50 hundred $t h s$
.500	$=$	$500 / 1000$	$=$	500 thousand $t h s$

Decimal to Fraction

Sink \& Sprout * Division Diet

Fraction to Decimal Rack to Deck * Rainbow Division

Imagine that a fraction rack is bolted to a wall.

Unbolt and rotate the rack until it becomes a decimal deck.

Use Rainbow Division to create the equivalent decimal above the deck.

Percents = Fractions

Percents are fractions whose denominators are 100. Per cent = Per 100.

Percent to Fraction:

 Pound the Percent Sign * Division Diet$50 \% \%$| Imagine the $\%$ sign is |
| :---: |
| composed of the |
| number 1 sandwiched |
| between a 0 and a 0. |

Pound the I below the fraction bar where it becomes 1 .

Pound each 0 down below the

The \% transforms into 100.

Put overweight
fractions on a
Division Diet.

BrainAid
Pound down on a Division Diet!

Fraction to Percent: Multiply Muscles * Heave the Hundredth

Multiply muscles to make the denominator 100 and the numerator equivalent.

$$
\frac{1}{2} \times 50=\frac{50}{100}
$$

- The original denominator must be a factor of 100 (i.e., $2,4,5,10,20,25$, or 50). If not, use Rack-to-Deck then Double DiP.
- If the denominator is greater than 100 , put it on a Division Diet to reduce it to 100 .

The fraction bar shatters.

The 100 transforms into \%.

Fraction to Percent
Multiply Muscles * Heave the Hundredth

$$
\begin{array}{ll}
\frac{1}{4} \times & = \\
& =
\end{array}
$$

Decimals = Percents
 DiP

Decimal into Percent
Decimal to Percent

Double DiP Right

Decimal from Percent

Double DiP Left

Decimal from Percent Double DiP Left $\longleftarrow 25 \%$

Fraction $=$ Decimal $=$ Percent

Fraction Wheel

Fraction $=$ Decimal $=$ Percent
3 numbers $\times 2$ directions $=6$ algorithms

